Profitable researchers within the organic sciences talk their work to a world viewers and should achieve this in English to be widely known and cited. This is applicable equally to scientific talks, posters, and printed articles; thus, scientific English have to be prioritized in nonnative English-speaking (NNES) tutorial establishments to organize their trainees for profitable careers.

Right here, we suggest methods for integrating scientific English into PhD applications working in NNES international locations. Many graduate college students from NNES international locations try for a global profession and encounter English as an essential barrier.

Rat Cholesterol ELISA ELISA
E01A11128
Goat Cholesterol ELISA ELISA
E01A46041
Human Cholesterol ELISA ELISA
E01A2368

Primarily based on our personal experiences as NNES postdoctoral fellows at a US establishment, or as a US mentor of those trainees, we contend that standard studying processes at dwelling establishments don’t sufficiently prioritize scientific English because the medium for normal discussions of laboratory-generated knowledge. Principal investigators, mentors, and supervisors are key in selling English language utilization as a structured element of PhD coaching.

If these stakeholders routinely combine English coaching and schooling throughout the analysis laboratory program, graduates might be outfitted to pursue worldwide tutorial careers. The concepts offered listed below are meant for NNES PhD college students (and their mentors) who search a global scientific profession within the organic sciences.

H2B Antibody Antibody
Lck antibody Antibody

Undergraduate organic sciences and biotechnology college students’ reflective essays concentrate on descriptive particulars of experiential studying experiences.

 

Experiential studying experiences (ELEs), alternatives for college kids to use data and abilities critically in a hands-on atmosphere, are basic to the apprenticeship mannequin of organic and biotechnological sciences. ELEs improve student-learning positive factors, enhance profession readiness, and supply essential networking alternatives. Nevertheless, college students don’t typically acknowledge the advantages of ELEs. Reflection is a extremely efficient device to articulate studying positive factors and join new content material with established data.

Due to this fact, senior undergraduate college students (n = 23), majoring in organic sciences or biotechnology, wrote required reflective essays about their ELE, in response to an deliberately obscure immediate. Qualitative evaluation of the reflective essays recognized themes current within the reflective essays that usually included descriptions of what college students did, with whom they labored, and what they realized throughout their ELE, however lacked crucial evaluation or deep reflection about their expertise. Variations had been additionally current between several types of ELEs.

These outcomes present a basis for guiding college students to deeper reflection, finally leading to better advantages from their ELEs. To advertise extra sturdy reflection, and, due to this fact, theoretically improve studying positive factors from ELEs, we propose a number of iterations of reflection, teacher suggestions and training, and ELE-specific prompts that concentrate on the position of ELEs inside college students’ private {and professional} trajectory.

H2B Antibody Antibody
E11-184659
Lck antibody Antibody
GWB-250026
anti- Antibody^Polyclonal antibody control antibody
LSMab09882
CD11b Antibody Antibody
E19-2911-1
CD11b Antibody Antibody
E19-2911-2

Controlling for physique measurement results in inferential biases within the organic sciences.

 

Many traits correlate with physique measurement. Research that search to uncover the ecological elements that drive evolutionary responses in traits usually study these responses relative to related modifications in physique measurement utilizing a number of regression evaluation. Nevertheless, it’s not properly appreciated that within the presence of strongly correlated variables, the partial (i.e., relative) regression coefficients typically change signal in comparison with the unique coefficients.

Such signal reversals are troublesome to interpret in a biologically significant approach, and will result in misguided evolutionary inferences if the true mechanism underlying the signal reversal differed from the proposed mechanism. Right here, we use simulations to exhibit that signal reversal happens over a variety of parameter values frequent within the organic sciences.

Additional, as a case-in-point, we assessment the literature on mind measurement evolution; a discipline that explores how ecological traits relate to the evolution of relative mind measurement (mind measurement relative to physique measurement). We discover that the majority research present signal reversals and thus that the inferences of many research on this discipline could also be inconclusive. Lastly, we suggest some approaches to mitigating this subject.

Recombinant Humanp21 Recombinant Protein
92-035
TAGLN Recombinant Protein (Rat) (Recombinant- Tag)
RP232205
TAGLN2 Recombinant Protein (Rat) (Recombinant Tag)
RP232208
TAGLN3 Recombinant Protein (Rat) (Recombinant Tag)
RP232211
TAGLN3 Recombinant Protein (Rat) (Recombinant Tag)
RP232214

Frequency Modulated Möbius Mannequin Precisely Predicts Rhythmic Indicators in Organic and Bodily Sciences.

 

Motivated by functions in bodily and organic sciences, we developed a Frequency Modulated Möbius (FMM) mannequin to explain rhythmic patterns in oscillatory programs. Not like normal symmetric sinusoidal fashions, FMM is a versatile parametric mannequin that permits deformations to sinusoidal form to accommodate generally seen asymmetries in functions. FMM mannequin parameters are straightforward to estimate and the mannequin is simple to interpret advanced rhythmic knowledge.

We illustrate FMM mannequin in three disparate functions, specifically, circadian clock gene expression, corticoptropin ranges in depressed sufferers and the temporal gentle depth patterns of distant stars. In every case, FMM mannequin is demonstrated to be versatile, scientifically believable and straightforward to interpret. Evaluation of artificial knowledge derived from patterns of actual knowledge, recommend that FMM mannequin suits the information very properly each visually in addition to when it comes to the goodness of match measure complete imply squared error.

An R language based mostly software program for implementing FMM mannequin is offered. Progressive knee joint degeneration happens following removing of a torn meniscus. Nevertheless, there may be important variability within the fee of growth of post-meniscectomy osteoarthritis (OA). Whereas there isn’t any present consensus on the danger elements for growth of knee OA in sufferers with meniscus tears, it’s seemingly that each organic and biomechanical elements play crucial roles.

Mouse B29 Differentiation Reporter (pGreenZeo, Virus)

SR1005VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse CD8 Differentiation Reporter (pGreenZeo, Virus)

SR1006VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human CD2 Differentiation Reporter (pGreenZeo, Virus)

SR1009VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse Actc Differentiation Reporter (pGreenZeo, Virus)

SR10010VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human GFAP Differentiation Reporter (pGreenZeo, Virus)

SR10015VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse GFAP Differentiation Reporter (pGreenZeo, Virus)

SR10016VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse EMR1 Differentiation Reporter (pGreenZeo, Virus)

SR10018VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse CD44 Differentiation Reporter (pGreenZeo, Virus)

SR10020VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human BM88 Differentiation Reporter (pGreenZeo, Virus)

SR10021VA-1 SBI >2 x 10^6 IFUs 691 EUR

Rat Nestin Differentiation Reporter (pGreenZeo, Virus)

SR10034VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse ALBP Differentiation Reporter (pGreenZeo, Virus)

SR10036VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human NGN3 Differentiation Reporter (pGreenZeo, Virus)

SR10037VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human PDX1 Differentiation Reporter (pGreenZeo, Virus)

SR10039VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse PDX1 Differentiation Reporter (pGreenZeo, Virus)

SR10040VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human MAP2 Differentiation Reporter (pGreenZeo, Virus)

SR10047VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human ACTC Differentiation Reporter (pGreenZeo, Virus)

SR10049VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human NKX2.5 Differentiation Reporter (pGreenZeo, virus)

SR10067VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse CD68 Differentiation Reporter (pGreenZeo, Virus)

SR1008VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human Tnnt2 Differentiation Reporter (pGreenZeo, Virus)

SR10012VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse Tnnt2 Differentiation Reporter (pGreenZeo, Virus)

SR10013VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse SM22a Differentiation Reporter (pGreenZeo, Virus)

SR10014VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human CD11b Differentiation Reporter (pGreenZeo, Virus)

SR10017VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse GAD67 Differentiation Reporter (pGreenZeo, Virus)

SR10023VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human Opsin Differentiation Reporter (pGreenZeo, Virus)

SR10027VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human FABP7 Differentiation Reporter (pGreenZeo, Virus)

SR10048VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse Col2a1 Differentiation Reporter (pGreenZeo, Virus)

SR1001VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse Camk2a Differentiation Reporter (pGreenZeo, Virus)

SR10022VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human Nestin Differentiation Reporter (pGreenZeo, Virus)

SR10035VA-1 SBI >2 x 10^6 IFUs 691 EUR

NFAT Reporter (Luc) - Jurkat Cell Line

60621 BPS Bioscience 2 vials 2295 EUR
Description: The NFAT Reporter - Jurkat Cell Line contains a firefly luciferase gene under the control of the_x000D_NFAT response element stably integrated into Jurkat cells. This cell line has been validated for_x000D_response to thapsigargin, ionomycin, and phorbol 12-myristate 13-acetate (PMA). It is useful as_x000D_a control cell line for other NFAT reporter cell lines expressing various immune checkpoint_x000D_receptors.

GAL4 Reporter (Luc)-HEK293 Cell Line

60656 BPS Bioscience 2 vials 1095 EUR
Description: The GAL4 Reporter (Luc) - HEK293 Cell Line contains a firefly luciferase gene under the control of a multimerized GAL4 upstream activation sequence (UAS) stably integrated into HEK293 cells. The cell line does not contain any exogenous activators of the GAL4 reporter and can be used alongside BPS Cat. #60655 as a control.

Human Insulin Differentiation Reporter (pGreenZeo, Virus)

SR10028VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse Myogenin Differentiation Reporter (pGreenZeo, Virus)

SR10050VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human Osteocalcin Differentiation Reporter (pGreenZeo, Virus)

SR1003VA-1 SBI >2 x 10^6 IFUs 691 EUR

Mouse IBA-1 Differentiation Reporter (pGreenZeo, Virus)

SR10019VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human SPP-1 Differentiation Reporter (pGreenZeo, Virus)

SR1002VA-1 SBI >2 x 10^6 IFUs 691 EUR

STAT5 Reporter (Luc) - Ba/F3 Cell line

79772 BPS Bioscience 2 vials 2275 EUR
Description: The STAT5 Reporter (Luc)-Ba/F3 cell line is designed for monitoring STAT5 signal transduction pathways. It contains a firefly luciferase gene driven by the STAT5 response element located upstream of the minimal TATA promoter. After activation by cytokines or growth factors, endogenous STAT5 binds to the DNA response elements, inducing transcription of the luciferase reporter gene.

IRF Reporter (Luc) - THP-1 Cell line

79858 BPS Bioscience 2 vials 1810 EUR
Description: The Interferon Regulatory Factor (IRF) reporter (Luc)-THP-1 cell line is designed to study the activation and signaling of Cytosolic DNA Sensors (CDS) in human monocytic cell line THP-1. It contains a firefly luciferase gene driven by multimerized ISRE (Interferon Stimulated Response Element) located upstream of the minimal TATA promoter. _x000D_The cGAS-STING pathway acts to detect cytosolic DNA and induce an immune response. Briefly, upon binding DNA, the protein cGAS (cyclic GMP-AMP Synthase) triggers reaction of GTP and ATP to form cGAMP. cGAMP binds to STING (Stimulator of Interferon Genes) which triggers phosphorylation of IRF3 via TBK1. IRF3 can then bind to interferon-stimulated responsive elements (ISRE) in the nucleus and leads to IFN-α/β production. The IRF reporter (Luc)-THP-1 cell line is highly responsive to STING and CDS ligands.

Human MLC-2v Differentiation Reporter (pGreenZeo, Virus)

SR10011VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human GFAP Differentiation Reporter (pGreenZeo, Virus) Puro

SR10015VA-P SBI >2 x 10^6 IFUs 691 EUR

Human HLA-DRa Differentiation Reporter (pGreenZeo, Virus)

SR1007VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human Keratin 14 Differentiation Reporter (pGreenZeo, Virus)

SR10038VA-1 SBI >2 x 10^6 IFUs 691 EUR

NF-κB Reporter (Luc) - HCT116 Cell Line

60623 BPS Bioscience 2 vials 1095 EUR
Description: NF-B luciferase reporter construct is stably integrated into the genome of HCT-116 cells. The
firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of
the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors
bind to the DNA response elements to induce transcription of the luciferase gene._x000D_The NF-κB-luciferase/HCT-116 cell line is suitable for monitoring the activity of NF-κB signaling
in response to stimulants such as the cytokines TNF and IL-1β, pathogen-associated
molecular pattern (PAMP) (i.e. flagellin) or endogenous damage-associated molecular pattern
(DAMP) molecules (i.e. NOD1 ligand) (see application references). It is also suitable for
establishing cell-based screens for inhibitors that target specific NF-κB stimulating molecules.
This cell line can be further modified to allow investigation of downstream NF-κB activities as a
result of targeted genetic mutation(s).

NF-κB reporter (Luc) - HEK293 Cell line

60650 BPS Bioscience 2 vials 1365 EUR
Description: The NF-κB reporter (Luc) HEK293 cell line is designed to monitor nuclear factor Kappa B (NF-κB) activity. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or agonists of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene. The cell line has been functionally validated in response to human TNF-α, IL-1β, and IL-17.

NF- κB Reporter (Luc) - Raw 264.7 Cell line

79978 BPS Bioscience 2 vials 2045 EUR
Description: The NF-κB reporter (Luc)-Raw 264.7 cell line is designed for monitoring nuclear factor Kappa B (NF-κB) signal transduction pathways. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or stimulants of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene.

NF- κB Reporter (Luc) - THP-1 Cell Line

79645 BPS Bioscience 2 vials 1900 EUR
Description: The NF-κB reporter (Luc)-THP-1 cell line is designed for monitoring nuclear factor Kappa B (NF-κB) signal transduction pathways. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or stimulants of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene.

PAI-1 Reporter (Luc) - Mv1 Lu Cell Line

60544 BPS Bioscience 2 vials 3595 EUR
Description: PAI-1 Reporter (Luc)-Mv1 Lu cell line is designed for monitoring transforming growth factor β (TGF-β)-induced plasminogen activator inhibitor-1 (PAI-1) expression. Transforming growth factor-β (TGF-β) is a potent regulator of cellular differentiation, proliferation, migration, and protein expression._x000D__x000D_PAI-1 Reporter (Luc) -Mv1 Lu cell line contains a firefly luciferase gene under the control of PAI-1 responsive elements stably integrated into Mv1 Lu (NBL-7) cells, showing TGF-β pathway response. This cell line is validated for the TGF-β response to the induction of PAI-1 gene expression through luciferase activity. _x000D_

Mouse Alpha-Tubulin Differentiation Reporter (pGreenZeo, Virus)

SR10025VA-1 SBI >2 x 10^6 IFUs 691 EUR

Human Doublecortin (DCX) Differentiation Reporter (pGreenZeo, Virus)

SR10041VA-1 SBI >2 x 10^6 IFUs 691 EUR

Lentiviral Dual Reporter: CMV-GFP-T2A-Luciferase pre-packaged virus

BLIV101VA-1 SBI >2 x10^6 IFUs 722 EUR

Lentiviral Dual Reporter: UBC-RFP-T2A-Luciferase pre-packaged virus

BLIV200VA-1 SBI >2 x10^6 IFUs 722 EUR

NF-κB reporter (Luc) - NIH/3T3 Cell line

79469 BPS Bioscience 2 vials 1900 EUR
Description: The NF-κB reporter (Luc)-NIH/3T3 cell line is designed for monitoring nuclear factor Kappa B (NF-κB) signal transduction pathways. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or stimulants of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene.

Bald Lentiviral Pseudovirion (Luc-eGFP Dual Reporter)

79988 BPS Bioscience 500 µl x 2 795 EUR
Description: The bald lentiviral pseudovirion was produced without envelope glycoproteins such as VSV-G or SARS-CoV-2 spike. It contains a firefly luciferase and eGFP cassette (Luc-P2A-eGFP) as the reporters, driven by a CMV promoter. The bald lentiviral pseudovirion can serve as a negative control when studying virus entry initiated by specific interactions between virus particles and receptors._x000D_

NF-κB Reporter (Luc) - CHO-K1 Cell Line

60622 BPS Bioscience 2 vials 1095 EUR
Description: An NF-κB luciferase reporter construct is stably integrated into the genome of CHO-K1 cells. The firefly luciferase gene is controlled by the NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene._x000D_The NF-κB-luciferase / CHO-K1 cell line is suitable for monitoring the activity of NF-κB transcription factor through luminescence readout.). This cell line responds to human cytokine IL-1β, responds moderately to human TNF, and does not respond to human IFN-λ (2 µg/ml). Reducing the amount of serum during incubation period may increase the sensitivity to cytokines. Since CHO-K1 cells do not express endogenous human proteins, this cell line provides an excellent platform to enable exogenous expression of a protein of interest to study its downstream effect on NF-κB signaling.

Sox2 SRR2-pGreenFire Response Reporter, pre-packaged virus

SR20071-VA-1 SBI >2 x 10^6 IFUs 670 EUR

STAT3 Reporter (Luc) - HEK293 Cell line (Puromycin)

79800-P BPS Bioscience 2 vials 3730 EUR
Description: The STAT3 Reporter (Luc)-HEK293 cell line is designed for monitoring STAT3 signal transduction pathway. It contains a firefly luciferase gene driven by STAT3 response elements located upstream of the minimal TATA promoter. After activation by cytokines and growth factors, endogenous STAT3 binds to the DNA response elements, inducing transcription of the luciferase reporter gene.

Lentiviral Triple Reporter: CMV-Luciferase-RFP-TK pre-packaged virus

BLIV102VA-1 SBI >2 x10^6 IFUs 722 EUR

Lentiviral Triple Reporter: UBC-Luciferase-RFP-TK pre-packaged virus

BLIV202VA-1 SBI >2 x10^6 IFUs 722 EUR

Lentiviral Triple Reporter: MSCV-Luciferase-RFP-TK pre-packaged virus

BLIV302VA-1 SBI >2 x10^6 IFUs 722 EUR

Human E-Cadherin, CDH1 Differentiation Reporter (pGreenZeo, virus)

SR10070VA-1 SBI >2 x 10^6 IFUs 691 EUR

Foxp3 Reporter (Luc) - Jurkat Recombinant Cell Line

60628 BPS Bioscience 2 vials 7645 EUR
Description: Human Foxp3 luciferase reporter construct is stably integrated into the genome of Jurkat T- cells. The firefly luciferase gene is controlled by a human Foxp3 promoter and an enhancer-like conserved noncoding sequence upstream of the Foxp3 promoter.

STAT5 Reporter (Luc)- U937 Cell Line (GM-CSF)

79941 BPS Bioscience 2 vials 1980 EUR
Description: The STAT5 Reporter (Luc)-U937 cell line is designed for monitoring STAT5 signal transduction pathway in the U937 cell line. It contains a firefly luciferase gene driven by the STAT5 response element located upstream of the minimal TATA promoter. After activation by GM-CSF, endogenous STAT5 binds to the DNA response elements, inducing transcription of the luciferase reporter gene.

NF-κB Reporter (Luc) - A549 Stable Cell Line

60625 BPS Bioscience 2 vials 1915 EUR
Description: NF-κB luciferase reporter construct is stably integrated into the genome of A549 cells. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene.

Rev-A3-GFP/Luc HIV Reporter Cells

HRC-3 101Bio - Ask for price

Rev-CEM-GFP/Luc HIV Reporter Cells

HRC-5 101Bio - Ask for price

Rev-A3R5-GFP/Luc HIV Reporter Cells

HRC-2 101Bio - Ask for price

Human 5-HT1A (Luc) HEK293 Reporter Cell

CHEK-ATF131 ACROBIOSYSTEMS 2Vials 14209.6 EUR
Description: This gene encodes a G protein-coupled receptor for 5-hydroxytryptamine (serotonin), and belongs to the 5-hydroxytryptamine receptor subfamily. Serotonin has been implicated in a number of physiologic processes and pathologic conditions. Inactivation of this gene in mice results in behavior consistent with an increased anxiety and stress response. Mutation in the promoter of this gene has been associated with menstrual cycle-dependent periodic fevers.

Spike (B.1.429 Variant) Pseudotyped Lentivirus (Luc Reporter)

78172-1 BPS Bioscience 100 µl 835 EUR
Description: The Spike (B.1.429 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.429 Variant Spike (Genbank Accession #QHD43416.1 with B.1.429 variant mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.429 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.429 variant in a Biosafety Level 2 facility.Spike Mutations in B.1.429 Variant: S13I
W152C
L452R
D614G

Spike (B.1.429 Variant) Pseudotyped Lentivirus (Luc Reporter)

78172-2 BPS Bioscience 500 µl x 2 4195 EUR
Description: The Spike (B.1.429 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.429 Variant Spike (Genbank Accession #QHD43416.1 with B.1.429 variant mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.429 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.429 variant in a Biosafety Level 2 facility.Spike Mutations in B.1.429 Variant: S13I
W152C
L452R
D614G

Spike (B.1.617 Variant) Pseudotyped Lentivirus (Luc Reporter)

78204-1 BPS Bioscience 100 µl 835 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617 (Kappa, Delta lineage) was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.617 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.617 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617 variant in a Biosafety Level 2 facility. 

Spike (B.1.617 Variant) Pseudotyped Lentivirus (Luc Reporter)

78204-2 BPS Bioscience 500 µl x 2 4195 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617 (Kappa, Delta lineage) was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.617 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.617 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617 variant in a Biosafety Level 2 facility.

Spike (B.1.617.1 Variant) Pseudotyped Lentivirus (Luc Reporter)

78205-1 BPS Bioscience 100 µl 835 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.1 (also known as the Kappa Variant) was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.617.1 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.617.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.1 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.1 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.1 variant in a Biosafety Level 2 facility. Spike Mutations in B.1.617.1 Variant:G142DE154KL452RE484QD614GP681RQ1071H

Spike (B.1.617.1 Variant) Pseudotyped Lentivirus (Luc Reporter)

78205-2 BPS Bioscience 500 µl x 2 4195 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.1 (also known as the Kappa Variant) was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.617.1 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.617.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.1 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.1 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.1 variant in a Biosafety Level 2 facility. Spike Mutations in B.1.617.1 Variant:G142DE154KL452RE484QD614GP681RQ1071H

Spike (B.1.618 Variant) Pseudotyped Lentivirus (Luc Reporter)

78206-1 BPS Bioscience 100 µl 835 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.618 was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.618 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.618 Variant Spike (Genbank Accession #QHD43416.1 with B.1.618 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.618 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.618 variant in a Biosafety Level 2 facility. Spike Mutations in B.1.618 Variant:Y145delH146delE484KD614G

Spike (B.1.618 Variant) Pseudotyped Lentivirus (Luc Reporter)

78206-2 BPS Bioscience 500 µl x 2 4195 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.618 was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.618 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.618 Variant Spike (Genbank Accession #QHD43416.1 with B.1.618 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.618 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.618 variant in a Biosafety Level 2 facility. Spike Mutations in B.1.618 Variant:Y145delH146delE484KD614G

Spike (B.1.617.2 Variant) Pseudotyped Lentivirus (Luc Reporter)

78215-1 BPS Bioscience 100 µl 900 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.2 (also known as the Delta Variant) was identified in India in the spring of 2021. This variant has a number of mutations that increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.617.2 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.617.2 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.2 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.2 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.2 variant in a Biosafety Level 2 facility.

Spike (B.1.617.2 Variant) Pseudotyped Lentivirus (Luc Reporter)

78215-2 BPS Bioscience 500 µl x 2 4510 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.2 (also known as the Delta Variant) was identified in India in the spring of 2021. This variant has a number of mutations that increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.617.2 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.617.2 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.2 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.2 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.2 variant in a Biosafety Level 2 facility.

Spike (SARS-CoV-1) Pseudotyped Lentivirus (Luc Reporter)

78614-1 BPS Bioscience 100 µl 860 EUR
Description: Severe acute respiratory syndrome (SARS) was the first new infectious disease identified in the twenty-first century. It is a viral respiratory disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-1). The first known cases occurred in November 2002, and the syndrome caused the 2002-2004 SARS outbreak. Since 2004, no cases of SARS-CoV-1 have been reported worldwide. A virus very similar to SARS-CoV-1 was discovered in late 2019. This virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causative pathogen of COVID-19, the spread of which started the COVID-19 pandemic.SARS-CoV-1 attaches to the host cell surface before entering the cell. The Spike protein on the virus recognizes and binds to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of human airway epithelia as well as lung parenchyma. Drugs targeting the interaction between the Spike protein of SARS-CoV-1 and ACE2 may offer protection against the viral infection.The Spike (SARS-CoV-1) Pseudotyped Lentiviruses were produced with SARS-CoV-1 Spike (Genbank Accession #YP_009825051.1) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-1) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-1 in a cellular context, using a Biosafety Level 2 facility.The Spike (SARS-CoV-1) Pseudotyped Lentiviruses has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).

Spike (SARS-CoV-1) Pseudotyped Lentivirus (Luc Reporter)

78614-2 BPS Bioscience 500 µl x 2 4320 EUR
Description: Severe acute respiratory syndrome (SARS) was the first new infectious disease identified in the twenty-first century. It is a viral respiratory disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-1). The first known cases occurred in November 2002, and the syndrome caused the 2002-2004 SARS outbreak. Since 2004, no cases of SARS-CoV-1 have been reported worldwide. A virus very similar to SARS-CoV-1 was discovered in late 2019. This virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causative pathogen of COVID-19, the spread of which started the COVID-19 pandemic.SARS-CoV-1 attaches to the host cell surface before entering the cell. The Spike protein on the virus recognizes and binds to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of human airway epithelia as well as lung parenchyma. Drugs targeting the interaction between the Spike protein of SARS-CoV-1 and ACE2 may offer protection against the viral infection.The Spike (SARS-CoV-1) Pseudotyped Lentiviruses were produced with SARS-CoV-1 Spike (Genbank Accession #YP_009825051.1) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-1) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-1 in a cellular context, using a Biosafety Level 2 facility.The Spike (SARS-CoV-1) Pseudotyped Lentiviruses has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).

Human Alpha-Actin 2, ACTA2 Differentiation Reporter (pGreenZeo, virus)

SR10068VA-1 SBI >2 x 10^6 IFUs 691 EUR

NF-κB-Luciferase Reporter (Luc) - Jurkat Cell Line

60651 BPS Bioscience 2 vials 2340 EUR
Description: NF-κB luciferase reporter construct is stably integrated into the genome of Jurkat T- cells. The firefly luciferase gene is controlled by 4 copies of NF-kB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene.

Rev-CEM-Luc HIV Reporter Cells

HRC-6 101Bio - Ask for price

BLIV 2.0 Reporter: CMV-Luciferase-EF1a-copGFP Pre-packaged Virus

BLIV511VA-1 SBI >2 x10^6 IFUs 722 EUR

CD40/NF-κB Reporter (Luc) - HEK293 Stable Cell Line

60626 BPS Bioscience 2 vials 6825 EUR
Description: Recombinant HEK293 cell line expressing full length human CD40 (Tumor necrosis factor receptor superfamily member 5; TNFRSF5). Expression is confirmed by real-time qPCR and Western Blot. This NF-κB luciferase reporter construct is stably integrated into the genome. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by human CD40 ligand, NF-κB transcription factor binds to the DNA response elements to induce transcription of the luciferase gene. _x000D_

Human MLC-2v Differentiation Reporter (pGreenZeo, Virus), EF1-Neo Marker

SR10011VA-N SBI >2 x 10^6 IFUs 691 EUR

Spike (SARS-CoV-2, D614G) Pseudotyped Lentivirus (Luc Reporter)

78028-1 BPS Bioscience 100 µl 900 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein and ACE2 may offer protection against the viral infection. A SARS-CoV-2 variant carrying the spike protein amino acid change D614G has become the most prevalent form in the global pandemic.
The SARS-CoV-2 Spike D614G Pseudotyped Lentivirus were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1; with D614G mutation) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The SARS-CoV-2 Spike D614G pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 in a Biosafety Level 2 facility._x000D_

Spike (SARS-CoV-2, D614G) Pseudotyped Lentivirus (Luc Reporter)

78028-2 BPS Bioscience 500 µl x 2 4510 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein and ACE2 may offer protection against the viral infection. A SARS-CoV-2 variant carrying the spike protein amino acid change D614G has become the most prevalent form in the global pandemic.
The SARS-CoV-2 Spike D614G Pseudotyped Lentivirus were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1; with D614G mutation) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The SARS-CoV-2 Spike D614G pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 in a Biosafety Level 2 facility._x000D_

Spike (B.1.1.529, Omicron Variant) Pseudotyped Lentivirus (Luc Reporter)

78348-1 BPS Bioscience 100 µl 900 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.1.529 (also known as the Omicron Variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants.The Spike (B.1.1.529 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.1.529 Variant Spike (Genbank Accession #QHD43416.1 with B.1.1.529 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.1.529 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.1.529 variant in a Biosafety Level 2 facility.The Spike Omicron pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience, #79951).

Spike (B.1.1.529, Omicron Variant) Pseudotyped Lentivirus (Luc Reporter)

78348-2 BPS Bioscience 500 µl x 2 4510 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.1.529 (also known as the Omicron Variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants.The Spike (B.1.1.529 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.1.529 Variant Spike (Genbank Accession #QHD43416.1 with B.1.1.529 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.1.529 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.1.529 variant in a Biosafety Level 2 facility.The Spike Omicron pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience, #79951).

Myc Reporter (Luc) - HCT116 Cell Line (Myc Signaling Pathway)

60520 BPS Bioscience 2 vials 2175 EUR
Description: The Myc Reporter - HCT116 cell line contains the firefly luciferase gene under the control of Myc responsive elements stably integrated into HCT116 cells, a human colon cancer cell line. HCT116 contains a mutated beta-catenin which leads to the accumulation of β-catenin and constitutive activation of downstream Myc that induces the expression of Myc luciferase reporter. The cell line is validated for the inhibition of the expression of Myc luciferase reporter.

GITR / NF-κB-Luciferase Reporter (Luc) - Jurkat Cell Line

60546 BPS Bioscience 2 vials 10175 EUR
Description: This cell line expresses a surface human GITR (glucocorticoid-induced TNFR family related gene; TNFRSF18; CD357) and an NF-κB luciferase reporter construct that are stably integrated into the genome of Jurkat T-cells. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene. The cells have been validated using purified human GITRL and anti-GITR neutralizing antibody.

GAS Reporter (Luc) - HeLa Cell Line (IFNγ/JAK/STAT1 Pathway)

79041 BPS Bioscience 2 vials 1810 EUR
Description: The GAS reporter (Luc)-HeLa cell line is designed to monitor the activity of interferon gamma-induced signal transduction pathways in cultured cells by measuring activated STAT1 homodimers. It contains a firefly luciferase gene driven by three copies of the interferon gamma-activated sites (GAS) located upstream of the minimal TATA promoter. IFNγ first binds to a heterodimeric receptor consisting of two chains, IFNGR1 and IFNGR2, causing its dimerization and the activation of specific Janus family kinases (JAK1 and JAK2). Two STAT1 molecules associate with this ligand-activated receptor complex and are activated by phosphorylation to form active homodimer. The active STAT1 homodimers translocate to the nucleus where they bind interferon gamma-activated sites (GAS) in the promoter of IFNγ inducible genes, including luciferase reporter gene.

Sox2 SRR2-pGreenFire Response Reporter (pre-packaged virus, EF1-Puro marker)

SR20071-VA-P SBI >2 x 10^6 IFUs 670 EUR

Spike (B.1.617.2.1; Delta Plus Variant) Pseudotyped Lentivirus (Luc Reporter)

78218-1 BPS Bioscience 100 µl 835 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.2.1 (also known as the Delta Plus Variant) was identified in India in the spring of 2021. This variant has a number of mutations that increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.617.2.1 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.617.2.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.2.1 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G.  Compared to the Delta variant (B.1.617.2), variant Delta Plus has an additional mutation, K417N. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.2.1 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.2.1 variant in a Biosafety Level 2 facility.

Spike (B.1.617.2.1; Delta Plus Variant) Pseudotyped Lentivirus (Luc Reporter)

78218-2 BPS Bioscience 500 µl x 2 4195 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.2.1 (also known as the Delta Plus Variant) was identified in India in the spring of 2021. This variant has a number of mutations that increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.617.2.1 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.617.2.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.2.1 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G.  Compared to the Delta variant (B.1.617.2), variant Delta Plus has an additional mutation, K417N. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.2.1 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.2.1 variant in a Biosafety Level 2 facility.

Spike (SARS-CoV-2, UK Variant) Pseudotyped Lentivirus (Luc Reporter)

78112-1 BPS Bioscience 100 µl 875 EUR
Description: The Spike (SARS-CoV-2, UK variant) Pseudotyped Lentivirus were produced with SARS-CoV-2 UK Variant Spike (Genbank Accession #QHD43416.1 with UK variant mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2, UK variant) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 UK variant in a Biosafety Level 2 facility._x000D_

Spike (SARS-CoV-2, UK Variant) Pseudotyped Lentivirus (Luc Reporter)

78112-2 BPS Bioscience 500 µl x 2 4405 EUR
Description: The Spike (SARS-CoV-2, UK variant) Pseudotyped Lentivirus were produced with SARS-CoV-2 UK Variant Spike (Genbank Accession #QHD43416.1 with UK variant mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2, UK variant) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 UK variant in a Biosafety Level 2 facility._x000D_

Spike(SARS-CoV-2) Pseudotyped Lentivirus (Luc-eGFP Dual Reporter)

79982-1 BPS Bioscience 100 µl 1075 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection._x000D_
The SARS-CoV-2 Spike Pseudotyped Lentivirus (Luc-eGFP dual reporter) were produced by replacing the VSV-G fusion glycoprotein with SARS-CoV-2 Spike protein (Genbank Accession #QHD43416.1) as a surrogate viral envelope protein. These pseudovirions also contain a firefly luciferase and eGFP cassette (Luc-P2A-eGFP) driven by a CMV promoter. The luciferase and eGFP are coexpressed under the CMV promoter in the transduced cells. Therefore, the Spike-mediated entry into the target cell can be conveniently measured via luciferase reporter activity or eGFP expression. The SARS-CoV-2 Spike pseudotyped lentivirus can be used in a cellular assay to measure the activity of neutralizing antibody against SARS-CoV-2._x000D_

Spike(SARS-CoV-2) Pseudotyped Lentivirus (Luc-eGFP Dual Reporter)

79982-2 BPS Bioscience 500 µl x 2 8110 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection._x000D_
The SARS-CoV-2 Spike Pseudotyped Lentivirus (Luc-eGFP dual reporter) were produced by replacing the VSV-G fusion glycoprotein with SARS-CoV-2 Spike protein (Genbank Accession #QHD43416.1) as a surrogate viral envelope protein. These pseudovirions also contain a firefly luciferase and eGFP cassette (Luc-P2A-eGFP) driven by a CMV promoter. The luciferase and eGFP are coexpressed under the CMV promoter in the transduced cells. Therefore, the Spike-mediated entry into the target cell can be conveniently measured via luciferase reporter activity or eGFP expression. The SARS-CoV-2 Spike pseudotyped lentivirus can be used in a cellular assay to measure the activity of neutralizing antibody against SARS-CoV-2._x000D_

pGreenFire 2.0 NFkB reporter virus (pGF2-NFκB-rFluc-T2A-GFP-mPGK-Puro)

TR412VA-P SBI >2 x 10^6 IFUs 702 EUR

pGreenFire 2.0 NFAT reporter virus (pGF2-NFAT-rFluc-T2A-GFP-mPGK-Puro)

TR451VA-P SBI >2 x 10^6 IFUs 702 EUR

pGreenFire 2.0 AP-1 reporter virus (pGF2-AP1-rFluc-T2A-GFP-mPGK-Puro)

TR452VA-P SBI >2 x 10^6 IFUs 702 EUR

GLP-1R/CRE (Luc) Reporter - HEK293 Recombinant Cell Line

78176 BPS Bioscience 2 vials 10105 EUR
Description: Recombinant HEK293 cells expressing firefly luciferase gene under the control of cAMP response element (CRE) with constitutive expression of human GLP-1R (Glucagon-like peptide 1 receptor; accession number BC113493)._x000D_GLP-1R, a member of the class B family of G protein-coupled receptors (GPCRs) primarily found in pancreatic β cells, is activated by a peptide hormone, glucagon-like peptide 1 (GLP-1) that is secreted from intestinal L-cells after nutrient ingestion. GLP-1R plays an important role in controlling blood sugar level by enhancing glucose-stimulated insulin secretion, so various research efforts have focused on the regulation of the GLP-1R mediated signaling pathway as a therapeutic approach to diabetes.

pGreenFire 2.0 HIF-1 reporter virus (pGF2-HIF1-rFluc-T2A-GFP-mPGK-Puro)

TR426VA-P SBI >2 x 10^6 IFUs 702 EUR

BLIV 2.0 Reporter: MSCV-Luciferase-EF1a-copGFP-T2A-Puro Pre-packaged Virus

BLIV713VA-1 SBI >2 x10^6 IFUs 722 EUR

Spike (B.1.351 Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78142-1 BPS Bioscience 100 µl 860 EUR
Description: The Spike (SARS-CoV-2) (B.1.351) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.351 Variant Spike (Genbank Accession #QHD43416.1 with B.1.351 mutations (L18F, D80A, D215G, R246I, K417N, E484K, N501Y, D614G, A701V) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2) (B.1.351) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.351 variant in a Biosafety Level 2 facility._x000D_

Spike (B.1.351 Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78142-2 BPS Bioscience 500 µl x 2 4320 EUR
Description: The Spike (SARS-CoV-2) (B.1.351) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.351 Variant Spike (Genbank Accession #QHD43416.1 with B.1.351 mutations (L18F, D80A, D215G, R246I, K417N, E484K, N501Y, D614G, A701V) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2) (B.1.351) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.351 variant in a Biosafety Level 2 facility._x000D_

Spike (P.1 Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78144-1 BPS Bioscience 100 µl 835 EUR
Description: In Brazil, a variant called P.1 was first identified in the summer of 2020. This variant has many mutations that may lead to higher transmissibility and infectivity. The Spike (P.1) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Variant Spike (Genbank #QHD43416.1 with P.1 mutations (L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I) as the envelope glycoproteins instead of the commonly used VSVG. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (P.1) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 (P.1) variant using a Biosafety Level 2 facility._x000D_

Spike (P.1 Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78144-2 BPS Bioscience 500 µl x 2 4195 EUR
Description: In Brazil, a variant called P.1 was first identified in the summer of 2020. This variant has many mutations that may lead to higher transmissibility and infectivity. The Spike (P.1) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Variant Spike (Genbank #QHD43416.1 with P.1 mutations (L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I) as the envelope glycoproteins instead of the commonly used VSVG. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (P.1) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 (P.1) variant using a Biosafety Level 2 facility._x000D_

pGreenFire 2.0 TCF/LEF reporter virus (pGF2-TCF/LEF-rFluc-T2A-GFP-mPGK-Puro)

TR413VA-P SBI >2 x 10^6 IFUs 702 EUR

CRE/CREB Reporter (Luc) - Jurkat Cell Line (cAMP/PKA Signaling Pathway)

79636 BPS Bioscience 2 vials 1810 EUR
Description: The CRE/CREB Reporter (Luc) - Jurkat Cell Line contains a firefly luciferase gene under the control of multimerized cAMP response element (CRE) stably integrated into Jurkat cells. Elevation of the intracellular cAMP level activates cAMP response element binding protein (CREB) to bind CRE and induces the expression of luciferase. This cell line is validated for response to stimulation by Forskolin.

CRE/CREB Reporter (Luc) - HEK293 Cell Line (cAMP/PKA Signaling Pathway)

60515 BPS Bioscience 2 vials 2070 EUR
Description: The cAMP/PKA Signaling Pathway CRE/CREB Reporter (Luc) - HEK293 Cell Line is designed for monitoring the activity of the cAMP/ PKA signaling pathway. The cAMP/PKA Signaling Pathway CRE/CREB Reporter (Luc) - HEK293 Cell Line contains a firefly luciferase gene under the control of multimerized cAMP response element (CRE) stably integrated into HEK293 cells. Elevation of the intracellular cAMP level activates cAMP response element binding protein (CREB) to bind CRE and induces the expression of luciferase.

Spike (K417T, E484K, N501Y) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78143-1 BPS Bioscience 100 µl 835 EUR
Description: The Spike (K417T, E484K, N501Y) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Variant Spike (Genbank Accession #QHD43416.1 with mutations K417T, E484K, and N501Y) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2, K417T, E484K, N501Y) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 K417T, E484K, N501Y variant in intact cells using a Biosafety Level 2 facility._x000D_

Spike (K417T, E484K, N501Y) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78143-2 BPS Bioscience 500 µl x 2 4195 EUR
Description: The Spike (K417T, E484K, N501Y) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Variant Spike (Genbank Accession #QHD43416.1 with mutations K417T, E484K, and N501Y) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2, K417T, E484K, N501Y) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 K417T, E484K, N501Y variant in intact cells using a Biosafety Level 2 facility._x000D_

Spike (B.1.621, Mu Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78618-1 BPS Bioscience 100 µl 795 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.621 (also known as the Mu Variant) was first identified in Columbia in early 2021. This variant has a number of mutations that may increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.621, Mu Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.621 Variant Spike (Genbank Accession #QHD43416.1 with B.1.621 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G.  These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.621, Mu Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against the B.1.621 variant in a Biosafety Level 2 facility.

Spike (B.1.621, Mu Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78618-2 BPS Bioscience 500 µl x 2 3995 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.621 (also known as the Mu Variant) was first identified in Columbia in early 2021. This variant has a number of mutations that may increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.621, Mu Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.621 Variant Spike (Genbank Accession #QHD43416.1 with B.1.621 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G.  These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.621, Mu Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against the B.1.621 variant in a Biosafety Level 2 facility.

A549-Dual NFkb-SEAP-IRF-Luc Reporter Cells

S0016001 Addexbio One Frozen vial 1400 EUR

GR-GAL4 Reporter (Luc)-HEK293 Cell Line (Glucocorticoid Receptor Pathway)

60655 BPS Bioscience 2 vials 2275 EUR
Description: The Glucocorticoid Receptor Pathway GAL4 Reporter (Luc) - HEK293 Cell Line contains a_x000D_firefly luciferase gene under the control of glucocorticoid receptor ligand binding domain that is_x000D_fused to the DNA binding domain (DBD) of GAL4 (GAL4 DBD-GR) stably integrated into_x000D_HEK293 cells. This fusion construct activates firefly luciferase expression under the control of a_x000D_multimerized GAL4 upstream activation sequence (UAS). This allows for specific detection of_x000D_glucocorticoid-induced activation of the glucocorticoid receptor without the need for individual_x000D_transcriptional targets and with low cross-reactivity for other nuclear receptor pathways. This cell_x000D_line is validated for response to stimulation of dexamethasone and to the treatment with_x000D_mifepristone, an inhibitor of the glucocorticoid signaling pathway.

Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78625-1 BPS Bioscience 100 µl 900 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. The Omicron Variant (B.1.1.529 variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of February 2022, Omicron variants have been divided into four distinct sub-lineages: BA.1, BA.1.1, BA.2, and BA.3.The Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.2 variant in a Biosafety Level 2 facility.The Spike Omicron BA.2 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).Spike Mutations in BA.2, Omicron Variant: T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78625-2 BPS Bioscience 500 µl x 2 4510 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. The Omicron Variant (B.1.1.529 variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of February 2022, Omicron variants have been divided into four distinct sub-lineages: BA.1, BA.1.1, BA.2, and BA.3.The Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.2 variant in a Biosafety Level 2 facility.The Spike Omicron BA.2 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).Spike Mutations in BA.2, Omicron Variant: T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78645-1 BPS Bioscience 100 µl 835 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants have been divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5.The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2.12.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.2.12.1 variant in a Biosafety Level 2 facility.The Spike Omicron BA.2.12.1 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).

Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78645-2 BPS Bioscience 500 µl x 2 4195 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants have been divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5.The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2.12.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.2.12.1 variant in a Biosafety Level 2 facility.The Spike Omicron BA.2.12.1 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).

Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78651-1 BPS Bioscience 100 µl 875 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants have been divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. Among them, BA.4 and BA.5 have identical mutations on their spike protein. The spike protein of BA.4 and BA.5 are referred as BA.4/5 in this datasheet.The Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.4/5 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.4/5 variant in a Biosafety Level 2 facility.As shown in Figures 2 and 3, the Spike Omicron BA.4/5 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).Spike Mutations in BA.4/5, Omicron Variant:Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78651-2 BPS Bioscience 500 µl x 2 4405 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants have been divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. Among them, BA.4 and BA.5 have identical mutations on their spike protein. The spike protein of BA.4 and BA.5 are referred as BA.4/5 in this datasheet.The Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.4/5 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.4/5, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.4/5 variant in a Biosafety Level 2 facility.As shown in Figures 2 and 3, the Spike Omicron BA.4/5 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).Spike Mutations in BA.4/5, Omicron Variant:Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

NF-kB/293/GFP-Luc Transcriptional Reporter Cell Line

TR860A-1 SBI >2 x 10^6 cells 3142 EUR

pGL3 3'UTR reporter WT 1.3 kb CD274 Hs 3'UTR Final Plasmid

PVT17094 Lifescience Market 2 ug 390 EUR

ARE Luciferase Reporter Lentivirus

79869 BPS Bioscience 500 µl x 2 875 EUR
Description: The Nrf2 antioxidant response pathway plays an important role in the cellular antioxidant defense. Nrf2, a basic leucine zipper transcription factor, induces the expression of antioxidant and phase II enzymes by binding to the ARE (antioxidant response element) region of the gene promoter. Under basal conditions, Nrf2 is retained in the cytosol by binding to the cytoskeletal protein Keap1. Upon exposure to oxidative stress or other ARE activators, Nrf2 is released from Keap1 and translocates to the nucleus, where it can bind to the ARE, leading to the expression of antioxidant and phase II enzymes that protect the cell from oxidative damage.
The ARE Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by ARE located upstream of the minimal TATA promoter. After transduction, activation of the Nrf2 antioxidant response pathway in the target cells can be monitored by measuring the luciferase activity.

SRE Luciferase Reporter Lentivirus

78627 BPS Bioscience 500 µl x 2 835 EUR
Description: The SRE (Serum Response Element) Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by the Serum Response Element located upstream of the minimal TATA promoter . After transduction, activation of the MAPK/ERK signaling pathway in the target cells can be monitored by measuring the luciferase activity.

Myc Luciferase Reporter Lentivirus

78628 BPS Bioscience 500 µl x 2 835 EUR
Description: The Myc Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by the Myc response element located upstream of the minimal TATA promoter and an antibiotic selection gene (puromycin) for the selection of stable clones. After transduction, the Myc signaling pathway in the target cells can be monitored by measuring the luciferase activity.

UAS Luciferase Reporter Lentivirus

78631 BPS Bioscience 500 µl x 2 835 EUR
Description: The UAS (Upstream Activation Sequence) Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by a multimerized GAL4 upstream activation sequence (UAS) located upstream of the minimal TATA promoter and an antibiotic selection gene (puromycin) for the selection of stable clones. After transduction, the UAS-controlled signaling pathway in the target cells can be monitored by measuring the luciferase activity.

p53 Luciferase Reporter Lentivirus

78666 BPS Bioscience 500 µl x 2 835 EUR
Description: The p53 Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce most types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by p53 response elements located upstream of the minimal TATA promoter (Figure 1) and an antibiotic selection gene (puromycin) for the selection of stable clones. After transduction, p53-regulated gene expression in the target cells can be monitored by measuring the luciferase activity.

HRE Luciferase Reporter Lentivirus

78668 BPS Bioscience 500 µl x 2 835 EUR
Description: The Hypoxia Response Element (HRE) Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce most types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by four copies of a hypoxia response elements (HRE) located upstream of the minimal TATA promoter (Figure 1) and an antibiotic selection gene (puromycin) for the selection of stable clones. After transduction, the induction of hypoxia in the target cells can be monitored by measuring the luciferase activity.

pGreenFire 2.0 Estrogen response element reporter virus (pGF2-ERE-rFluc-T2A-GFP-mPGK-Puro)

TR455VA-P SBI >2 x 10^6 IFUs 702 EUR

TEAD Luciferase Reporter Lentivirus

79833 BPS Bioscience 500 µl x 2 875 EUR
Description: The Hippo pathway regulates cell proliferation and cell death. It is activated by high cell density and cell stress to stop cell proliferation and induce apoptosis. The mammalian Hippo pathway comprises MST kinases and LATS kinases. When the Hippo pathway is activated, MST kinases phosphorylate LATS kinases, which phosphorylate transcriptional co-activators YAP and TAZ. Unphosphorylated YAP and TAZ remain in nucleus and interact with TEAD/TEF transcriptional factors to turn on cell cycle-promoting gene transcription. However, when phosphorylated, YAP and TAZ are recruited from the nucleus to the cytosol, so that the YAP and TAZ-dependent gene transcription is turned off. Dysfunction of the Hippo pathway is frequently detected in human cancer and its down-regulation correlates with the aggressive properties of cancer cells and poor prognosis.
The TEAD Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by the TEAD response elements located upstream of the minimal TATA promoter. After transduction, activation of the Hippo pathway in the target cells can be monitored by measuring the luciferase activity._x000D_

STAT3 Luciferase Reporter Lentivirus

79744 BPS Bioscience 500 µl x 2 860 EUR
Description: The STAT3 Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene under the control of STAT3-responsive element located upstream of the minimal TATA promoter. After transduction, activation of the STAT3 signaling pathway in the target cells can be monitored by measuring the luciferase activity._x000D_

STAT5 Luciferase Reporter Lentivirus

79745 BPS Bioscience 500 µl x 2 835 EUR
Description: The STAT5 Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene under the control of STAT5-responsive element located upstream of the minimal TATA promoter. After transduction, activation of the STAT5 signaling pathway in the target cells can be monitored by measuring the luciferase activity.

Spike (BA.1.1, Omicron Variant R346K) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78623-1 BPS Bioscience 100 µl 900 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.1.529 BA.1 (also known as the Omicron Variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. A sub-lineage of BA.1 with an R346K substitution in the spike protein is classified as B.1.1.529 BA.1.1.The Spike (B.1.1.529 BA.1.1, Omicron Variant R346K) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.1.529 BA.1.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.1.529 BA.1.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.1.529 BA.1.1, Omicron Variant R346K Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 B.1.1.529 BA.1.1 variant in a Biosafety Level 2 facility.The Spike B.1.1.529 BA.1.1 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).Spike Mutations in B.1.1.529 BA.1.1 Omicron Variant R346K:A67V, Δ69-70, T95I, G142D, Δ143-145, Δ211, L212I, ins214EPE, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F

Spike (BA.1.1, Omicron Variant R346K) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter)

78623-2 BPS Bioscience 500 µl x 2 4510 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.1.529 BA.1 (also known as the Omicron Variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. A sub-lineage of BA.1 with an R346K substitution in the spike protein is classified as B.1.1.529 BA.1.1.The Spike (B.1.1.529 BA.1.1, Omicron Variant R346K) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.1.529 BA.1.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.1.529 BA.1.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.1.529 BA.1.1, Omicron Variant R346K Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 B.1.1.529 BA.1.1 variant in a Biosafety Level 2 facility.The Spike B.1.1.529 BA.1.1 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).Spike Mutations in B.1.1.529 BA.1.1 Omicron Variant R346K:A67V, Δ69-70, T95I, G142D, Δ143-145, Δ211, L212I, ins214EPE, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F

NF-κB Luciferase Reporter Lentivirus

79564 BPS Bioscience 500 µl x 2 875 EUR
Description: The NF-κB Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After transduction, activation of the NF-κB signaling pathway in the target cells can be monitored by measuring the luciferase activity.

CRE/CREB Luciferase Reporter Lentivirus

79580 BPS Bioscience 500 µl x 2 835 EUR
Description: The main role of the cAMP response element, or CRE, is mediating the effects of Protein Kinase A (PKA) by way of transcription. Upon phosphorylation, CREB forms a functionally active dimer that binds the CRE element within the promoters of target genes and activates transcription. CRE is at the focus of many extracellular and intracellular signaling pathways, including cAMP, calcium, GPCR (G-protein coupled receptors) and neurotrophins. The cAMP/PKA signaling pathway is critical to numerous life processes in living organisms.The CRE/CREB Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by multimerized cAMP response element (CRE) located upstream of the minimal TATA promoter. After transduction, activation of the cAMP/PKA signaling pathway in the target cells can be monitored by measuring the luciferase activity.

NFAT Luciferase-RFP Reporter Lentivirus

78617-H BPS Bioscience 500 µl x 2 835 EUR
Description: The NFAT Luciferase-RFP Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase and RFP (Red Fluorescent Protein) cassette driven by the NFAT response element located upstream of the minimal TATA promoter and a hygromycin or puromycin selection gene to generate stable clones. After transduction, activation of the NFAT signaling pathway in the target cells can be monitored by measuring the luciferase activity or RFP expression. RFP fluoresces red-orange when excited; it has an excitation wavelength of 553 nm, and an emission wavelength of 574 nm.

NFAT Luciferase-RFP Reporter Lentivirus

78617-P BPS Bioscience 500 µl x 2 835 EUR
Description: The NFAT Luciferase-RFP Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase and RFP (Red Fluorescent Protein) cassette driven by the NFAT response element located upstream of the minimal TATA promoter and a hygromycin or puromycin selection gene to generate stable clones. After transduction, activation of the NFAT signaling pathway in the target cells can be monitored by measuring the luciferase activity or RFP expression. RFP fluoresces red-orange when excited; it has an excitation wavelength of 553 nm, and an emission wavelength of 574 nm.

NFAT eGFP Reporter Lentivirus

79922 BPS Bioscience 500 µl x 2 875 EUR
Description: The NFAT eGFP Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain an enhanced GFP gene driven by the NFAT response element located upstream of the minimal TATA promoter. After transduction, activation of the NFAT signaling pathway in the target cells can be monitored by examining eGFP expression._x000D_

STAT3 eGFP Reporter Lentivirus

78197 BPS Bioscience 500 µl x 2 795 EUR
Description: The STAT3 eGFP Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain an eGFP gene under the control of a STAT3-responsive element located upstream of the minimal TATA promoter . After transduction, activation of the STAT3 signaling pathway in the target cells can be monitored by examining eGFP expression.

Luciferase Reporter Assay Kit

55R-1540 Fitzgerald 200 assays 294 EUR
Description: Assay Kit for detection of Luciferase Reporter in the research laboratory

Luciferase Reporter Assay Kit

K801-200 Biovision each 235.2 EUR

Luciferase Reporter Assay Kit

K2181-200 ApexBio 200 assays 217.2 EUR

NF-κB eGFP Reporter Lentivirus

79926 BPS Bioscience 500 µl x 2 820 EUR
Description: The NF-κB eGFP Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to infect almost all types of mammalian cells, including primary and non-dividing cells. The particles contain an enhanced GFP gene driven by the NF-κB response element located upstream of the minimal TATA promoter. After transduction, activation of the NF-κB signaling pathway in the target cells can be monitored by examining eGFP expression.

CRE/CREB eGFP Reporter Lentivirus

78153 BPS Bioscience 500 µl x 2 795 EUR
Description: The CRE/CREB eGFP Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain an eGFP gene driven by a multimerized cAMP response element (CRE) located upstream of the minimal TATA promoter . After transduction, activation of the cAMP/PKA signaling pathway in the target cells can be monitored by examining eGFP expression.

IL-2 Promoter Luciferase Reporter Lentivirus

79825 BPS Bioscience 500 µl x 2 795 EUR
Description: The IL-2 Promoter Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by the human IL-2 promoter. After transduction, activation of the IL-2 signaling pathway in the target cells can be monitored by measuring the luciferase activity._x000D_

IL-8 Promoter Luciferase Reporter Lentivirus

79827 BPS Bioscience 500 µl x 2 795 EUR
Description: The IL-8 Promoter Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by the human IL-8 promoter. After transduction, activation of the IL-8 signaling pathway in the target cells can be monitored by measuring the luciferase activity._x000D_

Bald Lentiviral Pseudovirion (Luciferase Reporter)

79943 BPS Bioscience 500 µl x 2 875 EUR
Description: The bald lentiviral pseudovirion was produced without envelope glycoproteins such as VSV-G or SARS-CoV-2 spike. It contains the firefly luciferase gene driven by a CMV promoter as the reporter. The bald lentiviral pseudovirion can serve as a negative control when studying virus entry initiated by specific interactions between virus particles and receptors._x000D_

NFAT Luciferase Reporter Lentivirus-79579-G

79579-G BPS Bioscience 500 µl x 2 835 EUR
Description: The NFAT Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by the NFAT response element located upstream of the minimal TATA promoter (Figure 1) and an antibiotic selection gene (hygromycin, puromycin, or G418) for the selection of stable clones. After transduction, activation of the NFAT signaling pathway in the target cells can be monitored by measuring the luciferase activity.

NFAT Luciferase Reporter Lentivirus-79579-H

79579-H BPS Bioscience 500 µl x 2 860 EUR
Description: The NFAT Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by the NFAT response element located upstream of the minimal TATA promoter and an antibiotic selection gene (hygromycin or puromycin) for the selection of stable clones. After transduction, activation of the NFAT signaling pathway in the target cells can be monitored by measuring the luciferase activity.

NFAT Luciferase Reporter Lentivirus-79579-P

79579-P BPS Bioscience 500 µl x 2 860 EUR
Description: The NFAT Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by the NFAT response element located upstream of the minimal TATA promoter and an antibiotic selection gene (hygromycin or puromycin) for the selection of stable clones. After transduction, activation of the NFAT signaling pathway in the target cells can be monitored by measuring the luciferase activity.

XRE Luciferase Reporter Lentivirus (AhR Signaling)

78672 BPS Bioscience 500 µl x 2 835 EUR
Description: The Xenobiotic response element (XRE) Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce most types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by three copies of an XRE located upstream of the minimal TATA promoter (Figure 1), and an antibiotic selection gene (puromycin) for the selection of stable clones. After transduction, the activation of aryl hydrocarbon receptor (AhR) in the target cells can be monitored by measuring the luciferase activity.

2C::tdTomato Reporter

PVT10473 Lifescience Market 2 ug 319.2 EUR

pMIR- Reporter Plasmid

PVT1324 Lifescience Market 2 ug 319.2 EUR

Dual Luciferase Reporter Assay Kit

DL101-01 Vazyme 100 rxn 309.6 EUR

Luciferase Reporter Gene Assay Kit

Z5030001 Biochain 200 assays 329 EUR

Luciferase Reporter Gene Assay Kit

Z5030002 Biochain 500 assays 636 EUR

Luciferase Reporter Gene Assay Kit

Z5030003 Biochain 1,000 assays 1118 EUR

NFAT Reporter (Luciferase) - THP-1 Cell Line

78320 BPS Bioscience 2 vials 1810 EUR
Description: The NFAT reporter (Luciferase)-THP-1 cell line is designed for monitoring the NFAT (nuclear factor of activated T-cells) signaling pathway in THP-1 cells by measuring luciferase activity. It contains a firefly luciferase gene driven by the NFAT response element located upstream of the minimal TATA promoter. Upon activation by NFAT activators such as Ionomycin, endogenous NFAT transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene.

SBE Luciferase Reporter Lentivirus (TGFβ/SMAD Pathway)

79806 BPS Bioscience 500 µl x 2 875 EUR
Description: The SBE Luciferase Reporter Lentivirus (TGFβ/SMAD signaling pathway) are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by multimerized SBE-responsive element located upstream of the minimal TATA promoter. After transduction, activation of the TGFβ/SMAD signaling pathway can be monitored by measuring the luciferase activity._x000D_

Negative Control eGFP Reporter Lentivirus

79927 BPS Bioscience 500 µl x 2 835 EUR
Description: The Negative Control eGFP Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to infect almost all types of mammalian cells, including primary and non-dividing cells. The particles contain an enhanced Green Fluorescent Protein (eGFP) gene under the control of a minimal TATA promoter, without any additional transcriptional response elements.

Bald Lentiviral Pseudovirion (eGFP Reporter)

79987 BPS Bioscience 500 µl x 2 835 EUR
Description: The bald lentiviral pseudovirion was produced without envelope glycoproteins such as VSV-G or SARS-CoV-2 spike. It contains the eGFP gene driven by a CMV promoter as the reporter. The bald lentiviral pseudovirion can serve as a negative control when studying virus entry initiated by specific interactions between virus particles and receptors._x000D_

NFAT Luciferase-eGFP Reporter Lentivirus-78656-G

78656-G BPS Bioscience 500 µl x 2 835 EUR
Description: The NFAT Luciferase-eGFP Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase and eGFP cassette driven by the NFAT response element located upstream of the minimal TATA promoter (Figure 1) and a puromycin selection gene to generate stable clones. After transduction, activation of the NFAT signaling pathway in the target cells can be monitored by measuring the luciferase activity or eGFP expression.

NFAT Luciferase-eGFP Reporter Lentivirus-78656-P

78656-P BPS Bioscience 500 µl x 2 835 EUR
Description: The NFAT Luciferase-eGFP Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase and eGFP cassette driven by the NFAT response element located upstream of the minimal TATA promoter (Figure 1) and a puromycin selection gene to generate stable clones. After transduction, activation of the NFAT signaling pathway in the target cells can be monitored by measuring the luciferase activity or eGFP expression.

Bald VSV Delta G (Luciferase Reporter)

78636-1 BPS Bioscience 100 µl 395 EUR
Description: The bald VSV Delta G (Luciferase Reporter) was produced without envelope glycoproteins. It contains the firefly luciferase gene as the reporter. The bald VSV Delta G (Luciferase Reporter) can serve as a negative control when studying virus entry initiated by specific interactions between virus particles and receptors.

Bald VSV Delta G (Luciferase Reporter)

78636-2 BPS Bioscience 500 µl x 2 1995 EUR
Description: The bald VSV Delta G (Luciferase Reporter) was produced without envelope glycoproteins. It contains the firefly luciferase gene as the reporter. The bald VSV Delta G (Luciferase Reporter) can serve as a negative control when studying virus entry initiated by specific interactions between virus particles and receptors.

AP1 Luciferase Reporter Lentivirus (JNK Signaling Pathway)

79823 BPS Bioscience 500 µl x 2 795 EUR
Description: The stress-activated protein kinase/c-jun N-terminal kinase (SAPK/JNK) family of proteins includes mitogen-activated protein kinases (MAPKs) that are activated by stress, inflammatory cytokines, mitogens, oncogenes, and inducers of cell differentiation and morphogenesis. Upon activation of the SAPK/JNK pathway, MAP Kinase Kinases phosphorylate and activate JNKs. The activated JNKs translocate to the nucleus where they phosphorylate and activate transcription factors such as c-Jun. c-Jun then binds to the activator protein-1 (AP1) response element and induces AP1 transcription.
The AP1 Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by AP1 response element located upstream of the minimal TATA promoter. After transduction, activation of the JNK signaling pathway and AP1 mediated activity in the target cells can be monitored by measuring the luciferase activity.

Reporter cell line generation

S302 101Bio - 15000 EUR

AP1 Reporter Kit (JNK Pathway)

60612 BPS Bioscience 500 rxns. 565 EUR
Description: The AP1 Reporter Kit is designed for monitoring the activity of the JNK signaling pathway and the transcriptional activity of AP1 in cultured cells. The kit contains a transfection-ready AP1 luciferase reporter vector. This reporter contains the firefly luciferase gene under the control of multimerized AP1 responsive elements located upstream of a minimal promoter. The AP1 reporter is premixed with a constitutively-expressing Renilla (sea pansy) luciferase vector that serves as an internal control for transfection efficiency. The kit also includes a non-inducible firefly luciferase vector premixed with constitutively-expressing Renilla luciferase vector as a negative control. The non-inducible luciferase vector contains the firefly luciferase gene under the control of a minimal promoter, without any additional response elements. The negative control is critical for determining pathway-specific effects and the background luciferase activity.

Human ARE Reporter Cell Line

ABC-RC0079 AcceGen 1 vial Ask for price
Description: Human ARE Reporter Cell Line are suitable to monitor Nrf2 antioxidant response pathway activity.and screen for activators or inhibitors of the Nrf2 antioxidant response pathway.

Human Myc Reporter Cell Line

ABC-RC0108 AcceGen 1 vial Ask for price
Description: Human Myc Reporter Cell Line is used to monitor Myc pathway activity and screen for activators or inhibitors of the Myc pathway.

GAS Luciferase Reporter Lentivirus (IFN-γ/JAK/STAT1 Pathway)

78653 BPS Bioscience 500 µl x 2 835 EUR
Description: The GAS Luciferase Reporter Lentiviruses are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to transduce almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by three copies of the interferon gamma (IFN-γ) activated sites (GAS) located upstream of the minimal TATA promoter and a puromycin selection gene for the selection of stable clones. After transduction, the GAS-regulated gene expression in the target cells can be monitored by measuring the luciferase activity.

CSL Reporter - HEK293 Cell line

79754 BPS Bioscience 2 vials 2275 EUR
Description: The Notch CSL Reporter - HEK293 cell line contains the firefly luciferase gene under the control of Notch-response elements (CSL responsive elements) stably integrated into HEK293 cells. Transfection of this cell line with a Notch expression vector and activation of the Notch pathway leads to expression of luciferase reporter. This cell line is validated with a Notch1DelE expression vector, which is constitutively processed by γ-secretase, leading to the release of NICD and the expression of luciferase.

Human GAL4 Reporter Cell Line

ABC-RC0086 AcceGen 1 vial Ask for price
Description: Human GAL4 Reporter Cell Line is an ideal product for monitoring biological activity

Human ISRE Reporter Cell Line

ABC-RC0101 AcceGen 1 vial Ask for price
Description: Human ISRE Reporter Cell Line can be used for the following applications: • Monitor IFNa-induced activity and the JAK/STAT pathway activity.• Screen for activators or inhibitors of the JAK/STAT signaling pathway.

Human NFAT Reporter Cell Line

ABC-RC0113 AcceGen 1 vial Ask for price
Description: Human NFAT Reporter Cell Line can be used as follows: • Monitor intracellular calcium levels. • Screen for activators or inhibitors of PKC/ Ca2+ pathway. • Screen for agonists or antagonists of T cell receptors. • Control for immune checkpoint NFAT reporter cell lines.

Human RARα Reporter Cell Line

ABC-RC0119 AcceGen 1 vial Ask for price
Description: The RARa Reporter (Luc)-HEK293 Cell Line is designed for monitoring the activity of retinoic acid receptor alpha (RARa). Application: • Monitor RARa-regulated pathway activity• Screen agonists or antagonists of RAR?.

STAT3 Luciferase Reporter THP-1 Cell Line

78498 BPS Bioscience 2 vials 1900 EUR
Description: The STAT3 Luciferase Reporter THP-1 cell line is designed for monitoring the STAT3 signal transduction pathway. It contains a firefly luciferase gene driven by STAT3 response elements located upstream of the minimal TATA promoter. After activation by cytokines or growth factors, endogenous STAT3 binds to the DNA response elements, inducing transcription of the luciferase reporter gene.

IL-2 Luciferase Reporter Jurkat cell line

60481 BPS Bioscience 2 vials 6875 EUR
Description: Human IL-2 reporter construct is stably integrated into the genome of Jurkat T-cells. The firefly luciferase gene is controlled by a human IL-2 promoter.

Human p53 Luciferase Reporter Cell Line- RKO

ABC-RC0038 AcceGen 1 vial Ask for price
Description: Human p53 Luciferase Reporter Cell Line- RKO is derived from human colon cancer, and stably express firefly luciferase reporter gene under the control of the p53 response element. This cell line is an ideal cellular model for monitoring the activation of p53 Pathway triggered by stimuli treatment,enforced gene expression and gene knockdown.

ISRE Luciferase Reporter Lentivirus (JAK/STAT Signaling Pathway)

79824 BPS Bioscience 500 µl x 2 820 EUR
Description: The JAK/STAT pathway is activated by various cytokines and growth factors and plays a critical role in cell growth, hematopoiesis, and immune response. In mammals, there are four JAKs (JAK1, JAK2, JAK3 and TYK2) and seven STAT proteins. IFNα is a Type I interferon. Binding of IFNα to its receptor leads to the activation of JAK1 and TYK2, which in turn phosphorylate and activate STAT1 and STAT2. The phosphorylated STAT1 and 2 form a heterodimer and bind to IRF9/p48, forming a protein complex ISGF3. This complex translocates to the nucleus and binds to the ISRE (Interferon Stimulated Response Element) in the promoter region, thereby promoting transcription of interferon-inducible genes.
The ISRE Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by multimerized ISRE response element located upstream of the minimal TATA promoter. After transduction, the activity of Type I interferon-induced JAK/STAT signaling pathway in the target cells can be monitored by measuring the luciferase activity.

STAT3 Reporter Jurkat Cell Line

78497 BPS Bioscience 2 vials 1900 EUR
Description: The STAT3 Reporter Jurkat cell line is designed for monitoring the STAT3 signal transduction pathway. It contains a firefly luciferase gene driven by STAT3 response elements located upstream of the minimal TATA promoter. After activation by cytokines or growth factors, endogenous STAT3 binds to the DNA response elements, inducing transcription of the luciferase reporter gene.

GFP Reporter Cell Line-HEK293

ABC-RC0001 AcceGen 1 vial Ask for price
Description: GFP Reporter Cell Line-293 stably expresses GFP and blasticidin-resistant genes.Both GFP and blasticidin-resistant genes are introduced into parental 293 cells using lentivirus.

Spike (SARS-CoV-2) Pseudotyped Lentivirus (Luciferase Reporter)

79942-1 BPS Bioscience 100 µl 875 EUR
Description: The SARS-CoV-2 Spike Pseudotyped Lentivirus were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions also contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be conveniently measured via luciferase reporter activity. The SARS-CoV-2 Spike pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 in a Biosafety Level 2 facility._x000D_ _x000D_

Spike (SARS-CoV-2) Pseudotyped Lentivirus (Luciferase Reporter)

79942-2 BPS Bioscience 500 µl x 2 4405 EUR
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection._x000D_The SARS-CoV-2 Spike Pseudotyped Lentivirus were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions also contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be conveniently measured via luciferase reporter activity. The SARS-CoV-2 Spike pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 in a Biosafety Level 2 facility._x000D_ _x000D_

Human p53 Luciferase Reporter Cell Line- HeLa

ABC-RC0037 AcceGen 1 vial Ask for price
Description: Human p53 Luciferase Reporter Cell Line- HeLa is derived from human cervical cancer, and stably express firefly luciferase reporter gene under the control of the p53 response element. This cell line is an ideal cellular model for monitoring the activation of p53 Receptor Signaling Pathway triggered by stimuli treatment, enforced gene expression and gene knockdown.

Human LAG-3 / NFAT Reporter Cell Line-Jurkat

ABC-RC0102 AcceGen 1 vial Ask for price
Description: Human LAG-3 / NFAT Reporter Cell Line is derived from Jurkat. This reporter cell line can be used to screen for activators or inhibitors of LAG-3 signaling in a cellular context and characterize the biological activity of LAG-3 and its interactions with ligands

On this perspective paper we assessment the mechanical predictors and the organic predictors of the response of the knee to partial meniscectomy. We assessment the function of patient-based research, in-vivo animal fashions, cadaveric fashions, bioreactor programs, and statistically augmented computational fashions for the examine of meniscus perform and post-meniscectomy OA, offering perception into the essential interaction between biomechanical and biologic elements.

Recombinant Humanp21 Recombinant Protein
ProSci
TAGLN Recombinant Protein (Rat) (Recombinant- Tag)
ABM
TAGLN2 Recombinant Protein (Rat) (Recombinant Tag)
ABM
TAGLN3 Recombinant Protein (Rat) (Recombinant Tag)
ABM
TAGLN3 Recombinant Protein (Rat) (Recombinant Tag)
ABM

Leave a Reply

Your email address will not be published. Required fields are marked *