Profitable researchers within the organic sciences talk their work to a world viewers and should achieve this in English to be widely known and cited. This is applicable equally to scientific talks, posters, and printed articles; thus, scientific English have to be prioritized in nonnative English-speaking (NNES) tutorial establishments to organize their trainees for profitable careers.
Right here, we suggest methods for integrating scientific English into PhD applications working in NNES international locations. Many graduate college students from NNES international locations try for a global profession and encounter English as an essential barrier.
Custom Antibody titration by ELISA up to 2 rabbits and 1 bleed | |||
ELISA-1 | |||
Beta2-Microglobulin ELISA kit ELISA Kit | |||
LF-EK60047 | |||
Chicken thrombomodulin,TM ELISA KIT ELISA | |||
QY-E80092 |
Primarily based on our personal experiences as NNES postdoctoral fellows at a US establishment, or as a US mentor of those trainees, we contend that standard studying processes at dwelling establishments don’t sufficiently prioritize scientific English because the medium for normal discussions of laboratory-generated knowledge. Principal investigators, mentors, and supervisors are key in selling English language utilization as a structured element of PhD coaching.
If these stakeholders routinely combine English coaching and schooling throughout the analysis laboratory program, graduates might be outfitted to pursue worldwide tutorial careers. The concepts offered listed below are meant for NNES PhD college students (and their mentors) who search a global scientific profession within the organic sciences.
Positive control tissue section for each individua |
CD11b Antibody Antibody |
Undergraduate organic sciences and biotechnology college students’ reflective essays concentrate on descriptive particulars of experiential studying experiences.
Experiential studying experiences (ELEs), alternatives for college kids to use data and abilities critically in a hands-on atmosphere, are basic to the apprenticeship mannequin of organic and biotechnological sciences. ELEs improve student-learning positive factors, enhance profession readiness, and supply essential networking alternatives. Nevertheless, college students don’t typically acknowledge the advantages of ELEs. Reflection is a extremely efficient device to articulate studying positive factors and join new content material with established data.
Due to this fact, senior undergraduate college students (n = 23), majoring in organic sciences or biotechnology, wrote required reflective essays about their ELE, in response to an deliberately obscure immediate. Qualitative evaluation of the reflective essays recognized themes current within the reflective essays that usually included descriptions of what college students did, with whom they labored, and what they realized throughout their ELE, however lacked crucial evaluation or deep reflection about their expertise. Variations had been additionally current between several types of ELEs.
These outcomes present a basis for guiding college students to deeper reflection, finally leading to better advantages from their ELEs. To advertise extra sturdy reflection, and, due to this fact, theoretically improve studying positive factors from ELEs, we propose a number of iterations of reflection, teacher suggestions and training, and ELE-specific prompts that concentrate on the position of ELEs inside college students’ private {and professional} trajectory.
Positive control tissue section for each individua | |||
Control-Slides-for-each-antibody | |||
ASAP1 antibody Antibody | |||
DF8746 | |||
CD11b Antibody Antibody | |||
ABD2911 | |||
anti- Antibody^Polyclonal antibody control antibody | |||
LSMab09882 | |||
ARHGDIA Antibody / RHOGDI Antibody | |||
F54788-0.08ML |
Controlling for physique measurement results in inferential biases within the organic sciences.
Many traits correlate with physique measurement. Research that search to uncover the ecological elements that drive evolutionary responses in traits usually study these responses relative to related modifications in physique measurement utilizing a number of regression evaluation. Nevertheless, it’s not properly appreciated that within the presence of strongly correlated variables, the partial (i.e., relative) regression coefficients typically change signal in comparison with the unique coefficients.
Such signal reversals are troublesome to interpret in a biologically significant approach, and will result in misguided evolutionary inferences if the true mechanism underlying the signal reversal differed from the proposed mechanism. Right here, we use simulations to exhibit that signal reversal happens over a variety of parameter values frequent within the organic sciences.
Additional, as a case-in-point, we assessment the literature on mind measurement evolution; a discipline that explores how ecological traits relate to the evolution of relative mind measurement (mind measurement relative to physique measurement). We discover that the majority research present signal reversals and thus that the inferences of many research on this discipline could also be inconclusive. Lastly, we suggest some approaches to mitigating this subject.
Recombinant Humanp21 Recombinant Protein | |||
92-035 | |||
Recombinant phosphopantetheine adenylyltransferase (PPAT) (Recombinant) | |||
20-abx072018 | |||
Glyco Recombinant Protein A33 Recombinant Protein | |||
96-361 | |||
Glyco Recombinant Protein A33 Recombinant Protein | |||
96-364 | |||
STAG3L1 Recombinant Protein (Human) (Recombinant Tag) | |||
RP030283 |
Frequency Modulated Möbius Mannequin Precisely Predicts Rhythmic Indicators in Organic and Bodily Sciences.
Motivated by functions in bodily and organic sciences, we developed a Frequency Modulated Möbius (FMM) mannequin to explain rhythmic patterns in oscillatory programs. Not like normal symmetric sinusoidal fashions, FMM is a versatile parametric mannequin that permits deformations to sinusoidal form to accommodate generally seen asymmetries in functions. FMM mannequin parameters are straightforward to estimate and the mannequin is simple to interpret advanced rhythmic knowledge.
We illustrate FMM mannequin in three disparate functions, specifically, circadian clock gene expression, corticoptropin ranges in depressed sufferers and the temporal gentle depth patterns of distant stars. In every case, FMM mannequin is demonstrated to be versatile, scientifically believable and straightforward to interpret. Evaluation of artificial knowledge derived from patterns of actual knowledge, recommend that FMM mannequin suits the information very properly each visually in addition to when it comes to the goodness of match measure complete imply squared error.
An R language based mostly software program for implementing FMM mannequin is offered. Progressive knee joint degeneration happens following removing of a torn meniscus. Nevertheless, there may be important variability within the fee of growth of post-meniscectomy osteoarthritis (OA). Whereas there isn’t any present consensus on the danger elements for growth of knee OA in sufferers with meniscus tears, it’s seemingly that each organic and biomechanical elements play crucial roles.
AAV1-Luc Control Virus |
|||
AAV-321 | Cell Biolabs | 50 ?L | 1221.6 EUR |
Description: Luciferase control virus of AAV serotype 1. |
|||
AAV3-Luc Control Virus |
|||
AAV-323 | Cell Biolabs | 50 ?L | 1221.6 EUR |
Description: Luciferase control virus of AAV serotype 3. |
|||
AAV4-Luc Control Virus |
|||
AAV-324 | Cell Biolabs | 50 ?L | 1221.6 EUR |
Description: Luciferase control virus of AAV serotype 4. |
|||
AAV5-Luc Control Virus |
|||
AAV-325 | Cell Biolabs | 50 ?L | 1221.6 EUR |
Description: Luciferase control virus of AAV serotype 5. |
|||
AAV6-Luc Control Virus |
|||
AAV-326 | Cell Biolabs | 50 ?L | 1221.6 EUR |
Description: Luciferase control virus of AAV serotype 6. |
|||
Lenti-hTERT Antisense virus |
|||
G201 | ABM | 10 ml | 882 EUR |
Lenti-hTERT-Neo Virus |
|||
G204 | ABM | 10 ml | 973.2 EUR |
Lenti-Myc T58A Virus |
|||
G217 | ABM | 10 ml | 973.2 EUR |
Lenti-p53 siRNA Virus |
|||
G219 | ABM | 10 ml | 973.2 EUR |
Lenti-Ras V12 Virus |
|||
G221 | ABM | 10 ml | 973.2 EUR |
Lenti-Rb siRNA Virus |
|||
G223 | ABM | 10 ml | 973.2 EUR |
Mouse alpha 2-Macroglobulin (A2M) ELISA kit |
|||
600-720-A2M | Alpha Diagnostics | 1 Kit | 927.6 EUR |
STAT5 Reporter (Luc) - Ba/F3 Cell line |
|||
79772 | BPS Bioscience | 2 vials | 2275 EUR |
Description: The STAT5 Reporter (Luc)-Ba/F3 cell line is designed for monitoring STAT5 signal transduction pathways. It contains a firefly luciferase gene driven by the STAT5 response element located upstream of the minimal TATA promoter. After activation by cytokines or growth factors, endogenous STAT5 binds to the DNA response elements, inducing transcription of the luciferase reporter gene. |
|||
STAT3 Reporter (Luc) - HEK293 Cell line (Puromycin) |
|||
79800-P | BPS Bioscience | 2 vials | 3730 EUR |
Description: The STAT3 Reporter (Luc)-HEK293 cell line is designed for monitoring STAT3 signal transduction pathway. It contains a firefly luciferase gene driven by STAT3 response elements located upstream of the minimal TATA promoter. After activation by cytokines and growth factors, endogenous STAT3 binds to the DNA response elements, inducing transcription of the luciferase reporter gene. |
|||
IRF Reporter (Luc) - THP-1 Cell line |
|||
79858 | BPS Bioscience | 2 vials | 1810 EUR |
Description: The Interferon Regulatory Factor (IRF) reporter (Luc)-THP-1 cell line is designed to study the activation and signaling of Cytosolic DNA Sensors (CDS) in human monocytic cell line THP-1. It contains a firefly luciferase gene driven by multimerized ISRE (Interferon Stimulated Response Element) located upstream of the minimal TATA promoter. _x000D_The cGAS-STING pathway acts to detect cytosolic DNA and induce an immune response. Briefly, upon binding DNA, the protein cGAS (cyclic GMP-AMP Synthase) triggers reaction of GTP and ATP to form cGAMP. cGAMP binds to STING (Stimulator of Interferon Genes) which triggers phosphorylation of IRF3 via TBK1. IRF3 can then bind to interferon-stimulated responsive elements (ISRE) in the nucleus and leads to IFN-α/β production. The IRF reporter (Luc)-THP-1 cell line is highly responsive to STING and CDS ligands. |
|||
Bald Lentiviral Pseudovirion (Luc-eGFP Dual Reporter) |
|||
79988 | BPS Bioscience | 500 µl x 2 | 795 EUR |
Description: The bald lentiviral pseudovirion was produced without envelope glycoproteins such as VSV-G or SARS-CoV-2 spike. It contains a firefly luciferase and eGFP cassette (Luc-P2A-eGFP) as the reporters, driven by a CMV promoter. The bald lentiviral pseudovirion can serve as a negative control when studying virus entry initiated by specific interactions between virus particles and receptors._x000D_ |
|||
NF-κB Reporter (Luc) - HCT116 Cell Line |
|||
60623 | BPS Bioscience | 2 vials | 1095 EUR |
Description: NF-B luciferase reporter construct is stably integrated into the genome of HCT-116 cells. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene._x000D_The NF-κB-luciferase/HCT-116 cell line is suitable for monitoring the activity of NF-κB signaling in response to stimulants such as the cytokines TNF and IL-1β, pathogen-associated molecular pattern (PAMP) (i.e. flagellin) or endogenous damage-associated molecular pattern (DAMP) molecules (i.e. NOD1 ligand) (see application references). It is also suitable for establishing cell-based screens for inhibitors that target specific NF-κB stimulating molecules. This cell line can be further modified to allow investigation of downstream NF-κB activities as a result of targeted genetic mutation(s). |
|||
Foxp3 Reporter (Luc) - Jurkat Recombinant Cell Line |
|||
60628 | BPS Bioscience | 2 vials | 7645 EUR |
Description: Human Foxp3 luciferase reporter construct is stably integrated into the genome of Jurkat T- cells. The firefly luciferase gene is controlled by a human Foxp3 promoter and an enhancer-like conserved noncoding sequence upstream of the Foxp3 promoter. |
|||
NF-κB reporter (Luc) - HEK293 Cell line |
|||
60650 | BPS Bioscience | 2 vials | 1365 EUR |
Description: The NF-κB reporter (Luc) HEK293 cell line is designed to monitor nuclear factor Kappa B (NF-κB) activity. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or agonists of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene. The cell line has been functionally validated in response to human TNF-α, IL-1β, and IL-17. |
|||
Lenti-Bmi1 Virus, High Titer |
|||
LV608 | ABM | 5 x 20 ul | 1825.2 EUR |
Lenti-CDK4 Virus, High Titer |
|||
LV609 | ABM | 5 x 20 ul | 1825.2 EUR |
Lenti-hTERT Virus, High Titer |
|||
LV615 | ABM | 5 x 20 ul | 1825.2 EUR |
Lenti-EF1α-hTERT Virus |
|||
G706 | ABM | 10 ml | 1094.4 EUR |
Spike (B.1.429 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78172-1 | BPS Bioscience | 100 µl | 835 EUR |
Description: The Spike (B.1.429 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.429 Variant Spike (Genbank Accession #QHD43416.1 with B.1.429 variant mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.429 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.429 variant in a Biosafety Level 2 facility.Spike Mutations in B.1.429 Variant: S13I W152C L452R D614G |
|||
Spike (B.1.429 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78172-2 | BPS Bioscience | 500 µl x 2 | 4195 EUR |
Description: The Spike (B.1.429 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.429 Variant Spike (Genbank Accession #QHD43416.1 with B.1.429 variant mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.429 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.429 variant in a Biosafety Level 2 facility.Spike Mutations in B.1.429 Variant: S13I W152C L452R D614G |
|||
Spike (B.1.617 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78204-1 | BPS Bioscience | 100 µl | 835 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617 (Kappa, Delta lineage) was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.617 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.617 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617 variant in a Biosafety Level 2 facility. |
|||
Spike (B.1.617 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78204-2 | BPS Bioscience | 500 µl x 2 | 4195 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617 (Kappa, Delta lineage) was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.617 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.617 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617 variant in a Biosafety Level 2 facility. |
|||
Spike (B.1.617.1 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78205-1 | BPS Bioscience | 100 µl | 835 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.1 (also known as the Kappa Variant) was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.617.1 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.617.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.1 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.1 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.1 variant in a Biosafety Level 2 facility. Spike Mutations in B.1.617.1 Variant:G142DE154KL452RE484QD614GP681RQ1071H |
|||
Spike (B.1.617.1 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78205-2 | BPS Bioscience | 500 µl x 2 | 4195 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.1 (also known as the Kappa Variant) was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.617.1 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.617.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.1 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.1 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.1 variant in a Biosafety Level 2 facility. Spike Mutations in B.1.617.1 Variant:G142DE154KL452RE484QD614GP681RQ1071H |
|||
Spike (B.1.618 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78206-1 | BPS Bioscience | 100 µl | 835 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.618 was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.618 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.618 Variant Spike (Genbank Accession #QHD43416.1 with B.1.618 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.618 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.618 variant in a Biosafety Level 2 facility. Spike Mutations in B.1.618 Variant:Y145delH146delE484KD614G |
|||
Spike (B.1.618 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78206-2 | BPS Bioscience | 500 µl x 2 | 4195 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.618 was identified in India in the spring of 2021. This variant has a number of mutations that allow the virus to spread more easily and quickly than other variants. The Spike (B.1.618 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.618 Variant Spike (Genbank Accession #QHD43416.1 with B.1.618 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.618 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.618 variant in a Biosafety Level 2 facility. Spike Mutations in B.1.618 Variant:Y145delH146delE484KD614G |
|||
Spike (B.1.617.2 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78215-1 | BPS Bioscience | 100 µl | 900 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.2 (also known as the Delta Variant) was identified in India in the spring of 2021. This variant has a number of mutations that increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.617.2 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.617.2 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.2 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.2 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.2 variant in a Biosafety Level 2 facility. |
|||
Spike (B.1.617.2 Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78215-2 | BPS Bioscience | 500 µl x 2 | 4510 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.2 (also known as the Delta Variant) was identified in India in the spring of 2021. This variant has a number of mutations that increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.617.2 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.617.2 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.2 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.2 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.2 variant in a Biosafety Level 2 facility. |
|||
Spike (SARS-CoV-1) Pseudotyped Lentivirus (Luc Reporter) |
|||
78614-1 | BPS Bioscience | 100 µl | 860 EUR |
Description: Severe acute respiratory syndrome (SARS) was the first new infectious disease identified in the twenty-first century. It is a viral respiratory disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-1). The first known cases occurred in November 2002, and the syndrome caused the 2002-2004 SARS outbreak. Since 2004, no cases of SARS-CoV-1 have been reported worldwide. A virus very similar to SARS-CoV-1 was discovered in late 2019. This virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causative pathogen of COVID-19, the spread of which started the COVID-19 pandemic.SARS-CoV-1 attaches to the host cell surface before entering the cell. The Spike protein on the virus recognizes and binds to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of human airway epithelia as well as lung parenchyma. Drugs targeting the interaction between the Spike protein of SARS-CoV-1 and ACE2 may offer protection against the viral infection.The Spike (SARS-CoV-1) Pseudotyped Lentiviruses were produced with SARS-CoV-1 Spike (Genbank Accession #YP_009825051.1) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-1) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-1 in a cellular context, using a Biosafety Level 2 facility.The Spike (SARS-CoV-1) Pseudotyped Lentiviruses has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951). |
|||
Spike (SARS-CoV-1) Pseudotyped Lentivirus (Luc Reporter) |
|||
78614-2 | BPS Bioscience | 500 µl x 2 | 4320 EUR |
Description: Severe acute respiratory syndrome (SARS) was the first new infectious disease identified in the twenty-first century. It is a viral respiratory disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-1). The first known cases occurred in November 2002, and the syndrome caused the 2002-2004 SARS outbreak. Since 2004, no cases of SARS-CoV-1 have been reported worldwide. A virus very similar to SARS-CoV-1 was discovered in late 2019. This virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causative pathogen of COVID-19, the spread of which started the COVID-19 pandemic.SARS-CoV-1 attaches to the host cell surface before entering the cell. The Spike protein on the virus recognizes and binds to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of human airway epithelia as well as lung parenchyma. Drugs targeting the interaction between the Spike protein of SARS-CoV-1 and ACE2 may offer protection against the viral infection.The Spike (SARS-CoV-1) Pseudotyped Lentiviruses were produced with SARS-CoV-1 Spike (Genbank Accession #YP_009825051.1) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-1) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-1 in a cellular context, using a Biosafety Level 2 facility.The Spike (SARS-CoV-1) Pseudotyped Lentiviruses has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951). |
|||
NF-κB reporter (Luc) - NIH/3T3 Cell line |
|||
79469 | BPS Bioscience | 2 vials | 1900 EUR |
Description: The NF-κB reporter (Luc)-NIH/3T3 cell line is designed for monitoring nuclear factor Kappa B (NF-κB) signal transduction pathways. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or stimulants of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene. |
|||
NF- κB Reporter (Luc) - THP-1 Cell Line |
|||
79645 | BPS Bioscience | 2 vials | 1900 EUR |
Description: The NF-κB reporter (Luc)-THP-1 cell line is designed for monitoring nuclear factor Kappa B (NF-κB) signal transduction pathways. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or stimulants of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene. |
|||
STAT5 Reporter (Luc)- U937 Cell Line (GM-CSF) |
|||
79941 | BPS Bioscience | 2 vials | 1980 EUR |
Description: The STAT5 Reporter (Luc)-U937 cell line is designed for monitoring STAT5 signal transduction pathway in the U937 cell line. It contains a firefly luciferase gene driven by the STAT5 response element located upstream of the minimal TATA promoter. After activation by GM-CSF, endogenous STAT5 binds to the DNA response elements, inducing transcription of the luciferase reporter gene. |
|||
NF- κB Reporter (Luc) - Raw 264.7 Cell line |
|||
79978 | BPS Bioscience | 2 vials | 2045 EUR |
Description: The NF-κB reporter (Luc)-Raw 264.7 cell line is designed for monitoring nuclear factor Kappa B (NF-κB) signal transduction pathways. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or stimulants of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene. |
|||
PAI-1 Reporter (Luc) - Mv1 Lu Cell Line |
|||
60544 | BPS Bioscience | 2 vials | 3595 EUR |
Description: PAI-1 Reporter (Luc)-Mv1 Lu cell line is designed for monitoring transforming growth factor β (TGF-β)-induced plasminogen activator inhibitor-1 (PAI-1) expression. Transforming growth factor-β (TGF-β) is a potent regulator of cellular differentiation, proliferation, migration, and protein expression._x000D__x000D_PAI-1 Reporter (Luc) -Mv1 Lu cell line contains a firefly luciferase gene under the control of PAI-1 responsive elements stably integrated into Mv1 Lu (NBL-7) cells, showing TGF-β pathway response. This cell line is validated for the TGF-β response to the induction of PAI-1 gene expression through luciferase activity. _x000D_ |
|||
NF-κB Reporter (Luc) - CHO-K1 Cell Line |
|||
60622 | BPS Bioscience | 2 vials | 1095 EUR |
Description: An NF-κB luciferase reporter construct is stably integrated into the genome of CHO-K1 cells. The firefly luciferase gene is controlled by the NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene._x000D_The NF-κB-luciferase / CHO-K1 cell line is suitable for monitoring the activity of NF-κB transcription factor through luminescence readout.). This cell line responds to human cytokine IL-1β, responds moderately to human TNF, and does not respond to human IFN-λ (2 µg/ml). Reducing the amount of serum during incubation period may increase the sensitivity to cytokines. Since CHO-K1 cells do not express endogenous human proteins, this cell line provides an excellent platform to enable exogenous expression of a protein of interest to study its downstream effect on NF-κB signaling. |
|||
NF-κB Reporter (Luc) - A549 Stable Cell Line |
|||
60625 | BPS Bioscience | 2 vials | 1915 EUR |
Description: NF-κB luciferase reporter construct is stably integrated into the genome of A549 cells. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene. |
|||
NF-κB-Luciferase Reporter (Luc) - Jurkat Cell Line |
|||
60651 | BPS Bioscience | 2 vials | 2340 EUR |
Description: NF-κB luciferase reporter construct is stably integrated into the genome of Jurkat T- cells. The firefly luciferase gene is controlled by 4 copies of NF-kB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene. |
|||
Rat alpha 2-Macroglobulin (A2M) ELISA kit 96 tests, Quantitative |
|||
610-420-A2M | Alpha Diagnostics | 1 Kit | 927.6 EUR |
Human Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
DLR-a2M-Hu-48T | DL Develop | 48T | 529.2 EUR |
Description: A sandwich quantitative ELISA assay kit for detection of Human Alpha-2-Macroglobulin (a2M) in samples from serum, plasma, urine or other biological fluids. |
|||
Human Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
DLR-a2M-Hu-96T | DL Develop | 96T | 684 EUR |
Description: A sandwich quantitative ELISA assay kit for detection of Human Alpha-2-Macroglobulin (a2M) in samples from serum, plasma, urine or other biological fluids. |
|||
Mouse Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
DLR-a2M-Mu-48T | DL Develop | 48T | 493.2 EUR |
Description: A sandwich quantitative ELISA assay kit for detection of Mouse Alpha-2-Macroglobulin (a2M) in samples from serum, plasma, urine or other biological fluids. |
|||
Mouse Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
DLR-a2M-Mu-96T | DL Develop | 96T | 633.6 EUR |
Description: A sandwich quantitative ELISA assay kit for detection of Mouse Alpha-2-Macroglobulin (a2M) in samples from serum, plasma, urine or other biological fluids. |
|||
Rat Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
DLR-a2M-Ra-48T | DL Develop | 48T | 560.4 EUR |
Description: A sandwich quantitative ELISA assay kit for detection of Rat Alpha-2-Macroglobulin (a2M) in samples from serum, plasma, urine or other biological fluids. |
|||
Rat Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
DLR-a2M-Ra-96T | DL Develop | 96T | 726 EUR |
Description: A sandwich quantitative ELISA assay kit for detection of Rat Alpha-2-Macroglobulin (a2M) in samples from serum, plasma, urine or other biological fluids. |
|||
Human Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RD-a2M-Hu-48Tests | Reddot Biotech | 48 Tests | 523.2 EUR |
Human Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RD-a2M-Hu-96Tests | Reddot Biotech | 96 Tests | 721.2 EUR |
Mouse Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RD-a2M-Mu-48Tests | Reddot Biotech | 48 Tests | 482.4 EUR |
Mouse Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RD-a2M-Mu-96Tests | Reddot Biotech | 96 Tests | 663.6 EUR |
Rat Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RD-a2M-Ra-48Tests | Reddot Biotech | 48 Tests | 558 EUR |
Rat Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RD-a2M-Ra-96Tests | Reddot Biotech | 96 Tests | 771.6 EUR |
Human Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RDR-a2M-Hu-48Tests | Reddot Biotech | 48 Tests | 546 EUR |
Human Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RDR-a2M-Hu-96Tests | Reddot Biotech | 96 Tests | 754.8 EUR |
Mouse Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RDR-a2M-Mu-48Tests | Reddot Biotech | 48 Tests | 502.8 EUR |
Mouse Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RDR-a2M-Mu-96Tests | Reddot Biotech | 96 Tests | 693.6 EUR |
Rat Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RDR-a2M-Ra-48Tests | Reddot Biotech | 48 Tests | 583.2 EUR |
Rat Alpha-2-Macroglobulin (a2M) ELISA Kit |
|||
RDR-a2M-Ra-96Tests | Reddot Biotech | 96 Tests | 806.4 EUR |
Steady-Luc Firefly HTS Assay Kit (10x100 ml) |
|||
30028-3 | Biotium | 1KIT | 3774 EUR |
Description: Minimum order quantity: 1 unit of 1KIT |
|||
Human BM88 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10021VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse Camk2a Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10022VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse GAD67 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10023VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Rat NSE Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10024VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse MBP Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10026VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human Opsin Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10027VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human Insulin Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10028VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human LCK Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10032VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Rat Nestin Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10034VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human Nestin Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10035VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse ALBP Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10036VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human NGN3 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10037VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human PDX1 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10039VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human Osteocalcin Differentiation Reporter (pGreenZeo, Virus) |
|||
SR1003VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse PDX1 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10040VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human MAP2 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10047VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human FABP7 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10048VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human ACTC Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10049VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human B29 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR1004VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse Myogenin Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10050VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human GFAP Differentiation Reporter (pRedZeo, Virus) |
|||
SR10051VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse B29 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR1005VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human NKX2.5 Differentiation Reporter (pGreenZeo, virus) |
|||
SR10067VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse CD8 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR1006VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse CD68 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR1008VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human CD2 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR1009VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Oct4 CR4-pGreenFire Response Reporter (virus) |
|||
SR20070-VA-1 | SBI | >2 x 10^6 IFUs | 882 EUR |
Mouse Actc Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10010VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human Tnnt2 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10012VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse Tnnt2 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10013VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse SM22a Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10014VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human GFAP Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10015VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse GFAP Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10016VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human CD11b Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10017VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse EMR1 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10018VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse Col2a1 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR1001VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse CD44 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10020VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
NF-kB/293/GFP-Luc Transcriptional Reporter Cell Line |
|||
TR860A-1 | SBI | >2 x 10^6 cells | 3915.6 EUR |
Spike (SARS-CoV-2, D614G) Pseudotyped Lentivirus (Luc Reporter) |
|||
78028-1 | BPS Bioscience | 100 µl | 900 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein and ACE2 may offer protection against the viral infection. A SARS-CoV-2 variant carrying the spike protein amino acid change D614G has become the most prevalent form in the global pandemic. The SARS-CoV-2 Spike D614G Pseudotyped Lentivirus were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1; with D614G mutation) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The SARS-CoV-2 Spike D614G pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 in a Biosafety Level 2 facility._x000D_ |
|||
Spike (SARS-CoV-2, D614G) Pseudotyped Lentivirus (Luc Reporter) |
|||
78028-2 | BPS Bioscience | 500 µl x 2 | 4510 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein and ACE2 may offer protection against the viral infection. A SARS-CoV-2 variant carrying the spike protein amino acid change D614G has become the most prevalent form in the global pandemic. The SARS-CoV-2 Spike D614G Pseudotyped Lentivirus were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1; with D614G mutation) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The SARS-CoV-2 Spike D614G pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 in a Biosafety Level 2 facility._x000D_ |
|||
GLP-1R/CRE (Luc) Reporter - HEK293 Recombinant Cell Line |
|||
78176 | BPS Bioscience | 2 vials | 10105 EUR |
Description: Recombinant HEK293 cells expressing firefly luciferase gene under the control of cAMP response element (CRE) with constitutive expression of human GLP-1R (Glucagon-like peptide 1 receptor; accession number BC113493)._x000D_GLP-1R, a member of the class B family of G protein-coupled receptors (GPCRs) primarily found in pancreatic β cells, is activated by a peptide hormone, glucagon-like peptide 1 (GLP-1) that is secreted from intestinal L-cells after nutrient ingestion. GLP-1R plays an important role in controlling blood sugar level by enhancing glucose-stimulated insulin secretion, so various research efforts have focused on the regulation of the GLP-1R mediated signaling pathway as a therapeutic approach to diabetes. |
|||
Spike (B.1.1.529, Omicron Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78348-1 | BPS Bioscience | 100 µl | 900 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.1.529 (also known as the Omicron Variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants.The Spike (B.1.1.529 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.1.529 Variant Spike (Genbank Accession #QHD43416.1 with B.1.1.529 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.1.529 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.1.529 variant in a Biosafety Level 2 facility.The Spike Omicron pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience, #79951). |
|||
Spike (B.1.1.529, Omicron Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78348-2 | BPS Bioscience | 500 µl x 2 | 4510 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.1.529 (also known as the Omicron Variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants.The Spike (B.1.1.529 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.1.529 Variant Spike (Genbank Accession #QHD43416.1 with B.1.1.529 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.1.529 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.1.529 variant in a Biosafety Level 2 facility.The Spike Omicron pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience, #79951). |
|||
Myc Reporter (Luc) - HCT116 Cell Line (Myc Signaling Pathway) |
|||
60520 | BPS Bioscience | 2 vials | 2175 EUR |
Description: The Myc Reporter - HCT116 cell line contains the firefly luciferase gene under the control of Myc responsive elements stably integrated into HCT116 cells, a human colon cancer cell line. HCT116 contains a mutated beta-catenin which leads to the accumulation of β-catenin and constitutive activation of downstream Myc that induces the expression of Myc luciferase reporter. The cell line is validated for the inhibition of the expression of Myc luciferase reporter. |
|||
GITR / NF-κB-Luciferase Reporter (Luc) - Jurkat Cell Line |
|||
60546 | BPS Bioscience | 2 vials | 10175 EUR |
Description: This cell line expresses a surface human GITR (glucocorticoid-induced TNFR family related gene; TNFRSF18; CD357) and an NF-κB luciferase reporter construct that are stably integrated into the genome of Jurkat T-cells. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene. The cells have been validated using purified human GITRL and anti-GITR neutralizing antibody. |
|||
CD40/NF-κB Reporter (Luc) - HEK293 Stable Cell Line |
|||
60626 | BPS Bioscience | 2 vials | 6825 EUR |
Description: Recombinant HEK293 cell line expressing full length human CD40 (Tumor necrosis factor receptor superfamily member 5; TNFRSF5). Expression is confirmed by real-time qPCR and Western Blot. This NF-κB luciferase reporter construct is stably integrated into the genome. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by human CD40 ligand, NF-κB transcription factor binds to the DNA response elements to induce transcription of the luciferase gene. _x000D_ |
|||
Lenti-Myc T58A Virus, High Titer |
|||
LV618 | ABM | 5 x 20 ul | 1825.2 EUR |
Lenti-p53 siRNA Virus, High Titer |
|||
LV619 | ABM | 5 x 20 ul | 1825.2 EUR |
Lenti-Ras V12 Virus, High Titer |
|||
LV620 | ABM | 5 x 20 ul | 1825.2 EUR |
Lenti-Rb siRNA Virus, High Titer |
|||
LV621 | ABM | 5 x 20 ul | 1825.2 EUR |
Lenti-hTERT-Neo Virus, High Titer |
|||
LV622 | ABM | 5 x 20 ul | 1825.2 EUR |
Lenti-HPV-16 E6/E7 Virus |
|||
G268 | ABM | 10 ml | 882 EUR |
Spike (SARS-CoV-2, UK Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78112-1 | BPS Bioscience | 100 µl | 875 EUR |
Description: The Spike (SARS-CoV-2, UK variant) Pseudotyped Lentivirus were produced with SARS-CoV-2 UK Variant Spike (Genbank Accession #QHD43416.1 with UK variant mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2, UK variant) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 UK variant in a Biosafety Level 2 facility._x000D_ |
|||
Spike (SARS-CoV-2, UK Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78112-2 | BPS Bioscience | 500 µl x 2 | 4405 EUR |
Description: The Spike (SARS-CoV-2, UK variant) Pseudotyped Lentivirus were produced with SARS-CoV-2 UK Variant Spike (Genbank Accession #QHD43416.1 with UK variant mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2, UK variant) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 UK variant in a Biosafety Level 2 facility._x000D_ |
|||
Spike (B.1.617.2.1; Delta Plus Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78218-1 | BPS Bioscience | 100 µl | 835 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.2.1 (also known as the Delta Plus Variant) was identified in India in the spring of 2021. This variant has a number of mutations that increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.617.2.1 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.617.2.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.2.1 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. Compared to the Delta variant (B.1.617.2), variant Delta Plus has an additional mutation, K417N. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.2.1 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.2.1 variant in a Biosafety Level 2 facility. |
|||
Spike (B.1.617.2.1; Delta Plus Variant) Pseudotyped Lentivirus (Luc Reporter) |
|||
78218-2 | BPS Bioscience | 500 µl x 2 | 4195 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.617.2.1 (also known as the Delta Plus Variant) was identified in India in the spring of 2021. This variant has a number of mutations that increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.617.2.1 Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.617.2.1 Variant Spike (Genbank Accession #QHD43416.1 with B.1.617.2.1 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. Compared to the Delta variant (B.1.617.2), variant Delta Plus has an additional mutation, K417N. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.617.2.1 Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.617.2.1 variant in a Biosafety Level 2 facility. |
|||
GAS Reporter (Luc) - HeLa Cell Line (IFNγ/JAK/STAT1 Pathway) |
|||
79041 | BPS Bioscience | 2 vials | 1810 EUR |
Description: The GAS reporter (Luc)-HeLa cell line is designed to monitor the activity of interferon gamma-induced signal transduction pathways in cultured cells by measuring activated STAT1 homodimers. It contains a firefly luciferase gene driven by three copies of the interferon gamma-activated sites (GAS) located upstream of the minimal TATA promoter. IFNγ first binds to a heterodimeric receptor consisting of two chains, IFNGR1 and IFNGR2, causing its dimerization and the activation of specific Janus family kinases (JAK1 and JAK2). Two STAT1 molecules associate with this ligand-activated receptor complex and are activated by phosphorylation to form active homodimer. The active STAT1 homodimers translocate to the nucleus where they bind interferon gamma-activated sites (GAS) in the promoter of IFNγ inducible genes, including luciferase reporter gene. |
|||
Spike(SARS-CoV-2) Pseudotyped Lentivirus (Luc-eGFP Dual Reporter) |
|||
79982-1 | BPS Bioscience | 100 µl | 1075 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection._x000D_ The SARS-CoV-2 Spike Pseudotyped Lentivirus (Luc-eGFP dual reporter) were produced by replacing the VSV-G fusion glycoprotein with SARS-CoV-2 Spike protein (Genbank Accession #QHD43416.1) as a surrogate viral envelope protein. These pseudovirions also contain a firefly luciferase and eGFP cassette (Luc-P2A-eGFP) driven by a CMV promoter. The luciferase and eGFP are coexpressed under the CMV promoter in the transduced cells. Therefore, the Spike-mediated entry into the target cell can be conveniently measured via luciferase reporter activity or eGFP expression. The SARS-CoV-2 Spike pseudotyped lentivirus can be used in a cellular assay to measure the activity of neutralizing antibody against SARS-CoV-2._x000D_ |
|||
Spike(SARS-CoV-2) Pseudotyped Lentivirus (Luc-eGFP Dual Reporter) |
|||
79982-2 | BPS Bioscience | 500 µl x 2 | 8110 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection._x000D_ The SARS-CoV-2 Spike Pseudotyped Lentivirus (Luc-eGFP dual reporter) were produced by replacing the VSV-G fusion glycoprotein with SARS-CoV-2 Spike protein (Genbank Accession #QHD43416.1) as a surrogate viral envelope protein. These pseudovirions also contain a firefly luciferase and eGFP cassette (Luc-P2A-eGFP) driven by a CMV promoter. The luciferase and eGFP are coexpressed under the CMV promoter in the transduced cells. Therefore, the Spike-mediated entry into the target cell can be conveniently measured via luciferase reporter activity or eGFP expression. The SARS-CoV-2 Spike pseudotyped lentivirus can be used in a cellular assay to measure the activity of neutralizing antibody against SARS-CoV-2._x000D_ |
|||
GR-GAL4 Reporter (Luc)-HEK293 Cell Line (Glucocorticoid Receptor Pathway) |
|||
60655 | BPS Bioscience | 2 vials | 2275 EUR |
Description: The Glucocorticoid Receptor Pathway GAL4 Reporter (Luc) - HEK293 Cell Line contains a_x000D_firefly luciferase gene under the control of glucocorticoid receptor ligand binding domain that is_x000D_fused to the DNA binding domain (DBD) of GAL4 (GAL4 DBD-GR) stably integrated into_x000D_HEK293 cells. This fusion construct activates firefly luciferase expression under the control of a_x000D_multimerized GAL4 upstream activation sequence (UAS). This allows for specific detection of_x000D_glucocorticoid-induced activation of the glucocorticoid receptor without the need for individual_x000D_transcriptional targets and with low cross-reactivity for other nuclear receptor pathways. This cell_x000D_line is validated for response to stimulation of dexamethasone and to the treatment with_x000D_mifepristone, an inhibitor of the glucocorticoid signaling pathway. |
|||
Mouse Alpha-Tubulin Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10025VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human SPP-1 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR1002VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human Keratin 14 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10038VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human Doublecortin (DCX) Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10041VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human HLA-DRa Differentiation Reporter (pGreenZeo, Virus) |
|||
SR1007VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human MLC-2v Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10011VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Human GFAP Differentiation Reporter (pGreenZeo, Virus) Puro |
|||
SR10015VA-P | SBI | >2 x 10^6 IFUs | 906 EUR |
Mouse IBA-1 Differentiation Reporter (pGreenZeo, Virus) |
|||
SR10019VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Lenti-EF1α-hTERT Virus, High Titer |
|||
LV616 | ABM | 5 x 20 ul | 2068.8 EUR |
Lenti-CMV-hTERT-GFP-2A-Puro Virus |
|||
LV623 | ABM | 10 ml | 1270.8 EUR |
Lenti-CMV-hTERT-RFP-2A-Puro Virus |
|||
LV625 | ABM | 10 ml | 1270.8 EUR |
Spike (B.1.351 Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78142-1 | BPS Bioscience | 100 µl | 860 EUR |
Description: The Spike (SARS-CoV-2) (B.1.351) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.351 Variant Spike (Genbank Accession #QHD43416.1 with B.1.351 mutations (L18F, D80A, D215G, R246I, K417N, E484K, N501Y, D614G, A701V) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2) (B.1.351) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.351 variant in a Biosafety Level 2 facility._x000D_ |
|||
Spike (B.1.351 Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78142-2 | BPS Bioscience | 500 µl x 2 | 4320 EUR |
Description: The Spike (SARS-CoV-2) (B.1.351) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.351 Variant Spike (Genbank Accession #QHD43416.1 with B.1.351 mutations (L18F, D80A, D215G, R246I, K417N, E484K, N501Y, D614G, A701V) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2) (B.1.351) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 B.1.351 variant in a Biosafety Level 2 facility._x000D_ |
|||
Spike (K417T, E484K, N501Y) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78143-1 | BPS Bioscience | 100 µl | 835 EUR |
Description: The Spike (K417T, E484K, N501Y) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Variant Spike (Genbank Accession #QHD43416.1 with mutations K417T, E484K, and N501Y) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2, K417T, E484K, N501Y) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 K417T, E484K, N501Y variant in intact cells using a Biosafety Level 2 facility._x000D_ |
|||
Spike (K417T, E484K, N501Y) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78143-2 | BPS Bioscience | 500 µl x 2 | 4195 EUR |
Description: The Spike (K417T, E484K, N501Y) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Variant Spike (Genbank Accession #QHD43416.1 with mutations K417T, E484K, and N501Y) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (SARS-CoV-2, K417T, E484K, N501Y) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 K417T, E484K, N501Y variant in intact cells using a Biosafety Level 2 facility._x000D_ |
|||
Spike (P.1 Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78144-1 | BPS Bioscience | 100 µl | 835 EUR |
Description: In Brazil, a variant called P.1 was first identified in the summer of 2020. This variant has many mutations that may lead to higher transmissibility and infectivity. The Spike (P.1) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Variant Spike (Genbank #QHD43416.1 with P.1 mutations (L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I) as the envelope glycoproteins instead of the commonly used VSVG. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (P.1) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 (P.1) variant using a Biosafety Level 2 facility._x000D_ |
|||
Spike (P.1 Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78144-2 | BPS Bioscience | 500 µl x 2 | 4195 EUR |
Description: In Brazil, a variant called P.1 was first identified in the summer of 2020. This variant has many mutations that may lead to higher transmissibility and infectivity. The Spike (P.1) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Variant Spike (Genbank #QHD43416.1 with P.1 mutations (L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I) as the envelope glycoproteins instead of the commonly used VSVG. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (P.1) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 (P.1) variant using a Biosafety Level 2 facility._x000D_ |
|||
CRE/CREB Reporter (Luc) - Jurkat Cell Line (cAMP/PKA Signaling Pathway) |
|||
79636 | BPS Bioscience | 2 vials | 1810 EUR |
Description: The CRE/CREB Reporter (Luc) - Jurkat Cell Line contains a firefly luciferase gene under the control of multimerized cAMP response element (CRE) stably integrated into Jurkat cells. Elevation of the intracellular cAMP level activates cAMP response element binding protein (CREB) to bind CRE and induces the expression of luciferase. This cell line is validated for response to stimulation by Forskolin. |
|||
CRE/CREB Reporter (Luc) - HEK293 Cell Line (cAMP/PKA Signaling Pathway) |
|||
60515 | BPS Bioscience | 2 vials | 2070 EUR |
Description: The cAMP/PKA Signaling Pathway CRE/CREB Reporter (Luc) - HEK293 Cell Line is designed for monitoring the activity of the cAMP/ PKA signaling pathway. The cAMP/PKA Signaling Pathway CRE/CREB Reporter (Luc) - HEK293 Cell Line contains a firefly luciferase gene under the control of multimerized cAMP response element (CRE) stably integrated into HEK293 cells. Elevation of the intracellular cAMP level activates cAMP response element binding protein (CREB) to bind CRE and induces the expression of luciferase. |
|||
Human E-Cadherin, CDH1 Differentiation Reporter (pGreenZeo, virus) |
|||
SR10070VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Sox2 SRR2-pGreenFire Response Reporter, pre-packaged virus |
|||
SR20071-VA-1 | SBI | >2 x 10^6 IFUs | 882 EUR |
pLL-CMV-GFP-T2A-Puro [Lenti-LabelerTM virus] |
|||
LL100VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-CMV-GFP-T2A-Blast [Lenti-LabelerTM virus] |
|||
LL105VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-CMV-RFP-T2A-Puro [Lenti-LabelerTM virus] |
|||
LL110VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-CMV-RFP-T2A-Blast [Lenti-LabelerTM virus] |
|||
LL115VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-CMV-BFP-T2A-Puro [Lenti-LabelerTM virus] |
|||
LL120VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-CMV-BFP-T2A-Blast [Lenti-LabelerTM virus] |
|||
LL125VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-CMV-Luciferase-T2A-Puro [Lenti-LabelerTM virus] |
|||
LL150VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-EF1a-GFP-T2A-Puro [Lenti-LabelerTM virus] |
|||
LL200VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-EF1a-GFP-T2A-Blast [Lenti-LabelerTM virus] |
|||
LL205VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-EF1a-RFP-T2A-Puro [Lenti-LabelerTM virus] |
|||
LL210VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-EF1a-RFP-T2A-Blast [Lenti-LabelerTM virus] |
|||
LL215VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-EF1a-BFP-T2A-Puro [Lenti-LabelerTM virus] |
|||
LL220VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-EF1a-BFP-T2A-Blast [Lenti-LabelerTM virus] |
|||
LL225VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-EF1a-Luciferase-T2A-Puro [Lenti-LabelerTM virus] |
|||
LL250VA-1 | SBI | >2x10^6 IFUs | 810 EUR |
pLL-CMV-rFLuc-T2A-GFP [Lenti-LabelerTM virus] |
|||
LL300VA-1 | SBI | >2x10^6 IFUs | 836.4 EUR |
Lenti-HPV-16 E6/E7 Virus, High Titer |
|||
LV617 | ABM | 5 x 20 ul | 1704 EUR |
A2M 3'UTR Luciferase Stable Cell Line |
|||
TU000005 | ABM | 1.0 ml | 1672.8 EUR |
A2m 3'UTR Luciferase Stable Cell Line |
|||
TU101050 | ABM | 1.0 ml | Ask for price |
A2M 3'UTR GFP Stable Cell Line |
|||
TU050005 | ABM | 1.0 ml | 1672.8 EUR |
A2m 3'UTR Luciferase Stable Cell Line |
|||
TU200007 | ABM | 1.0 ml | Ask for price |
A2m 3'UTR GFP Stable Cell Line |
|||
TU250007 | ABM | 1.0 ml | Ask for price |
A2m 3'UTR GFP Stable Cell Line |
|||
TU151050 | ABM | 1.0 ml | Ask for price |
Spike (B.1.621, Mu Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78618-1 | BPS Bioscience | 100 µl | 795 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.621 (also known as the Mu Variant) was first identified in Columbia in early 2021. This variant has a number of mutations that may increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.621, Mu Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.621 Variant Spike (Genbank Accession #QHD43416.1 with B.1.621 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.621, Mu Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against the B.1.621 variant in a Biosafety Level 2 facility. |
|||
Spike (B.1.621, Mu Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78618-2 | BPS Bioscience | 500 µl x 2 | 3995 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. A variant called B.1.621 (also known as the Mu Variant) was first identified in Columbia in early 2021. This variant has a number of mutations that may increase morbidity and mortality and allow the virus to spread more easily and quickly than other variants.The Spike (B.1.621, Mu Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 B.1.621 Variant Spike (Genbank Accession #QHD43416.1 with B.1.621 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (B.1.621, Mu Variant) (SARS-CoV-2) pseudotyped lentivirus can be used to measure the activity of neutralizing antibody against the B.1.621 variant in a Biosafety Level 2 facility. |
|||
Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78625-1 | BPS Bioscience | 100 µl | 900 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. The Omicron Variant (B.1.1.529 variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of February 2022, Omicron variants have been divided into four distinct sub-lineages: BA.1, BA.1.1, BA.2, and BA.3.The Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.2 variant in a Biosafety Level 2 facility.The Spike Omicron BA.2 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).Spike Mutations in BA.2, Omicron Variant: T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K |
|||
Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78625-2 | BPS Bioscience | 500 µl x 2 | 4510 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. The Omicron Variant (B.1.1.529 variant) was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of February 2022, Omicron variants have been divided into four distinct sub-lineages: BA.1, BA.1.1, BA.2, and BA.3.The Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.2 variant in a Biosafety Level 2 facility.The Spike Omicron BA.2 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951).Spike Mutations in BA.2, Omicron Variant: T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K |
|||
Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78645-1 | BPS Bioscience | 100 µl | 835 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants have been divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5.The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2.12.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.2.12.1 variant in a Biosafety Level 2 facility.The Spike Omicron BA.2.12.1 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951). |
|||
Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (Luc Reporter) |
|||
78645-2 | BPS Bioscience | 500 µl x 2 | 4195 EUR |
Description: The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants have been divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5.The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BA.2.12.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BA.2.12.1, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BA.2.12.1 variant in a Biosafety Level 2 facility.The Spike Omicron BA.2.12.1 pseudovirus has been validated for use with target cells ACE2-HEK293 (which overexpress ACE2; BPS Bioscience #79951). |
|||
pMIR-Reporter-RASA1(3 |
|||
PVTB00444-2a | Lifescience Market | 2 ug | 427.2 EUR |
pMIR-Reporter-IL13(3 |
|||
PVTB00445-2a | Lifescience Market | 2 ug | 427.2 EUR |
Human Alpha-Actin 2, ACTA2 Differentiation Reporter (pGreenZeo, virus) |
|||
SR10068VA-1 | SBI | >2 x 10^6 IFUs | 906 EUR |
Lenti-EF1?¡À-hTERT-Hygro Virus, High Titer |
|||
LV632 | ABM | 5 x 20 ul | 2191.2 EUR |
Lenti-CMV-hTERT-GFP-2A-Puro Virus, High Titer |
|||
LV624 | ABM | 5 x 20 ul | 2191.2 EUR |
Lenti-CMV-hTERT-RFP-2A-Puro Virus, High Titer |
|||
LV626 | ABM | 5 x 20 ul | 2191.2 EUR |
Pooled Virus Library of all Lenti-miR microRNA Precursor Constructs [4 virus aliquots] |
|||
PMIRHPLVA-1 | SBI | 4 virus aliquots | 5974.8 EUR |
A2M Antibody |
|||
43304-100ul | SAB | 100ul | 302.4 EUR |
A2M antibody |
|||
70R-15491 | Fitzgerald | 50 ul | 522 EUR |
Description: Rabbit polyclonal A2M antibody |
|||
A2M Antibody |
|||
32318-100ul | SAB | 100ul | 302.4 EUR |
A2M Antibody |
|||
49482-100ul | SAB | 100ul | 399.6 EUR |
A2M Antibody |
|||
49482-50ul | SAB | 50ul | 286.8 EUR |
A2M antibody |
|||
20-S0403GND1-D0 | Fitzgerald | 10 ml | 152.4 EUR |
Description: Goat polyclonal Human alpha 2 Macroglobulin antibody |
|||
A2M antibody |
|||
20-S0411G000-V0 | Fitzgerald | 10 ml | 133.2 EUR |
Description: Goat polyclonal Human alpha 2 Macroglobulin antibody |
|||
A2M antibody |
|||
20-S5040G000-S4 | Fitzgerald | 10 ml | 159.6 EUR |
Description: Goat polyclonal Human alpha 2 Macroglobulin antibody |
|||
A2M Antibody |
|||
ABD6469 | Lifescience Market | 100 ug | 525.6 EUR |
A2M Antibody |
|||
ABD8174 | Lifescience Market | 100 ug | 525.6 EUR |
A2M Antibody |
|||
ABD8176 | Lifescience Market | 100 ug | 525.6 EUR |
On this perspective paper we assessment the mechanical predictors and the organic predictors of the response of the knee to partial meniscectomy. We assessment the function of patient-based research, in-vivo animal fashions, cadaveric fashions, bioreactor programs, and statistically augmented computational fashions for the examine of meniscus perform and post-meniscectomy OA, offering perception into the essential interaction between biomechanical and biologic elements.
Recombinant Humanp21 Recombinant Protein | |||
ProSci | |||
Recombinant phosphopantetheine adenylyltransferase (PPAT) (Recombinant) | |||
Abbexa | |||
Glyco Recombinant Protein A33 Recombinant Protein | |||
ProSci | |||
Glyco Recombinant Protein A33 Recombinant Protein | |||
ProSci | |||
STAG3L1 Recombinant Protein (Human) (Recombinant Tag) | |||
ABM |